Graphical Untyped Lambda Calculus Interactive Interpreter (GULCII)

Claude Heiland-Allen

https://mathr.co.uk mailto:claude@mathr.co.uk

Edinburgh, 2017

Outline

Lambda calculus encodings

How to perform lambda calculus

Future work

EOF

Outline

Lambda calculus encodings

How to perform lambda calculus

Future work

EOF

Notation

Backslash is used for lambda:

- easier to type
- ▶ familiar from Haskell

Neighbouring lambdas can be combined with one backslash:

Corresponds to:

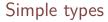
$$\lambda a. \lambda b. \lambda s. \lambda z. a s (b s z)$$

Church and Scott encodings

- encode data as lambda terms
- continuation passing style
- ► Church folds vs Scott case analysis

Continuation passing style

- the datum is a black box that knows itself
- the datum is passed functions that it calls with its deconstruction
- ▶ the datum has one argument per constructor
- each continuation has one argument per constructor argument



Church and Scott encoding coincide for simple types.

Bool

```
Haskell:
data Bool
  = False
  | True
Church, Scott:
true = \tt f . t
false = \t f . f
and = \a b . a b a
or = \a b . a a b
not = \a . a false true
The datum "true" takes two arguments, and returns the first,
```

which (by convention) denotes the value True.

Pair

```
Haskell:
data Pair a b
  = Pair a b
Church, Scott:
pair = \abp.pab
fst = \p . p (\a b . a)
snd = p \cdot p \cdot (a \cdot b)
```

The datum "pair x y" takes one argument, which is a function of two arguments, and passes it the stored values of "x" and "y".

Maybe

```
Haskell:
data Maybe a
  = Nothing
  | Just a
Church, Scott:
nothing = \n j . n
just = \langle a n j . j a \rangle
maybe = \n j m . m n j
```

Either

```
Haskell:
data Either a b
                                     = Left a
                                          | Right b
Church, Scott:
left = \alpha l r . l a
right = \blue l r . r b
either = \label{local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_local_
```

Recursive types

- ► Church and Scott encoding differ for recursive types.
- Church encoding uses folds. The deconstruction continuation threads throughout the structure.
- Scott encoding is similar to case analysis. The deconstruction continuation unwraps one layer of constructors only.

Natural numbers

```
Haskell:
data Nat
  = Zero
  | Succ Nat
Church:
zero = \slash z . z
succ = \n s z . s (n s z)
Scott:
zero = \slash z . z
succ = \n sz . sn
```

Nat examples

```
Haskell:
Zero, Succ Zero, Succ(Succ Zero), Succ(Succ Succ Zero))
Church, applying the same "s" "n" times at once:
\sl_z . z
\sl_z . s z
\sl z . s (s z)
\sl z . s (s (s z))
Scott, applying different "s" "n" times separately:
\sl_z . z
\s z . s (\s z . z)
\sl z . s (\sl z . s (\sl z . z))
\sl z . s (\s z . s (\s z . s (\s z . z)))
```

Church Nat succ

```
zero = \slash z . z
succ = \n s z . s (n s z)
  succ zero
= {- definition of succ -}
  (\n s z . s (n s z)) zero
= \{- \text{ beta } -\}
 \s z . s (zero s z)
= {- definition of zero -}
  \sl z . s ((\sl z . z) s z)
= \{- \text{ beta } -\}
  \sl z . s ((\z . z) z)
= {- beta -}
 \sl_s z \cdot s z
= {- definition of one -}
  one
```

Scott Nat succ

```
zero = \slash z \cdot z
succ = \n sz.sn
  succ zero
= {- definition of succ -}
 (\n s z . s n) zero
= {- beta -}
 \s z . s zero
= {- definition of zero -}
 \sl z . s (\sl z . z)
= {- definition of one -}
  one
```

Nat arithmetic

Church:

Scott, open terms with letrec:

Scott, closed terms with fix:

Fixed point combinator

Semantics:

```
fix f = f (fix f)
```

Implementation:

$$f . (\x . f (x x)) (\x . f (x x))$$

What it computes:

- ▶ The unique least fixed point under the definedness order.
- Allows recursive functions to be defined as closed terms.

Nat predecessor

```
Church (courtesy Wikipedia):  pred = \n f x . n (\g h . h (g f)) (\u . x) (\v . v)  Scott:  pred = \n . n (\p . p) zero
```

Nat conversion

```
Church arithmetic is more concise (and doesn't need fix).
Scott predecessor is comprehensible.
Mix and match?
churchToScott = \n . n scottSucc scottZero
scottToChurch = \n . n
    (\p . churchSucc (scottToChurch p))
    churchZero
scottToChurch = fix (\scottToChurch . \n . n
    (\p . churchSucc (scottToChurch p))
    churchZero)
```

Nat subtract and equality

```
Church:
sub = \mbox{m n . n pred m}
Scott:
sub = \mbox{m n . m}
  (p . n (q . sub p q) m)
  zero
equal = \mbox{m} n . m
  (p . n (q . equal p q) false)
  (n (\q . false) true)
```

Unwrap a layer of constructor from each number and recurse. There is a different equal for booleans:

```
equalBool = \a b . a b (not b)
```

List

```
Haskell:
data List a
  = Nil
  | Cons a (List a)
Church:
nil = \c n . n
cons = \x xs c n . c x (xs c n)
Scott:
nil = \c n . n
cons = \x xs c n . c x xs
```

List operations

```
Church, Scott:
isnil = \label{lambda} 1 (\label{lambda} xs . false) true
head = \label{eq:head} = \label{eq:head} . 1 (\label{eq:head} xs . x) error
Church (tail courtesy Wikipedia):
length = \label{length} . 1 (\xspace xs) zero
tail = \l1 c n . 1
     (\x xs g . g x (xs c)) (\x . n) (\x xs . xs)
Scott:
length = \label{length} . 1 (\xs . succ (length xs)) zero
tail = \label{lambda} 1 (\xspace xs) nil
```

More Scott functions

```
compose = \f g x . f (g x)
fold = \f e l . l (\x xs . f x (fold f e xs)) e
sum = fold add zero
ands = fold and true
ors = fold or false
map = f . fold (compose cons f) nil
all = \f . compose ands (map f)
any = \f . compose ors (map f)
take = \n 1. n(\p. 1 (\x xs. cons x (take p xs))ni1)ni1
drop = \n 1. n(\p. 1 (\x xs. drop p xs) nil) 1
iterate = \f x . cons x (iterate f (f x))
```

Outline

Lambda calculus encodings

How to perform lambda calculus

Future work

EOF

How to perform lambda calculus

- single step graph reduction
- visualisation of current state
- sonification of changes in state
- open terms vs closed terms

Graph reduction

```
data Term
  = Free String
  | Reference Integer
   Bound
            -- de Bruijn index 0
  | Scope Term -- see Lambdascope paper
  | Lambda Strategy Term
  | Apply Term Term
reduce
  :: Definitions -- Map String Term
  -> References -- Map Integer Term
  -> Term
  -> Maybe (References, Term)
```

Three kinds of Lambda

strict (syntax inspired by Haskell's -XBangPatterns):

$$(\v ! s) t$$

t is fully reduced before substitution into s.

copy:

$$(\v ? s) t$$

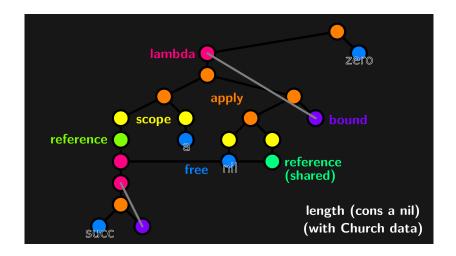
t is substituted for each occurrence of v in s.

► lazy:

$$(\v . s) t$$

a new Reference is created for t, and substituted into s. reduce reduces *inside* the References until it is irreducible, at which point the Reference is replaced with the Term it refers to.

Visualisation



Sonification

- count number of nodes of each type
- statistics are forwarded to a Pure-data patch
- changes in each count control a harmonic (one for each type of node) in a simple phase modulation synth

Open terms

- ▶ free variables looked up on demand from environment
- allows definitions to be changed at runtime
- easier to write

Drawbacks of open terms

- no sharing subterms can be evaluated many times due to duplication
- exponential work (worst case)
- exponential space (worst case)

Fixed points

- closed terms with fixed point combinators
- allows evaluation to be shared
- sharing can be vital for efficiency

Outline

Lambda calculus encodings

How to perform lambda calculus

Future work

EOF

Better Evaluator

- current evaluator is still somewhat ad-hoc and doesn't preserve sharing
- previous evaluator even had correctness bugs
- switch to using Lambdascope (or similar) as a library?

Auto Fix

Automatically translating open terms to use fixed point combinators:

- ▶ recursive functions can use fix
- mutually recursive functions can use fix combined with tuples

Magic It

- refer to previously evaluated terms
- including the currently evaluating term
- without restarting evaluation

Haskell example (ghci-8.0.1):

```
> 3
3
> it + 5
8
> it * 2
16
```

Further Performances / Project Ideas

- "An infinite deal of nothing", a variety of non-terminating loops each with their own intrinsic computational rhythm.
- Implement in untyped lambda calculus an interpreter for a known Turing-complete tape mutation based language and run some simple programs in it. Illustrates Turing-completeness of untyped lambda calculus, albeit slowly.

Outline

Lambda calculus encodings

How to perform lambda calculus

Future work

EOF

EOF

```
Thanks! Questions?
```

```
https://mathr.co.uk
mailto:claude@mathr.co.uk
```

https://hackage.haskell.org/package/gulcii

https://code.mathr.co.uk/gulcii