Graphical
Untyped Lambda Calculus
Interactive Interpreter
(GULCII)

Claude Heiland-Allen

https://mathr.co.uk
mailto:claude@mathr.co.uk

Edinburgh, 2017

https://mathr.co.uk
mailto:claude@mathr.co.uk

Outline

Lambda calculus encodings

How to perform lambda calculus

Future work

EOF

Outline

Lambda calculus encodings

Notation

Backslash is used for lambda:

> easier to type
» familiar from Haskell

Neighbouring lambdas can be combined with one backslash:
\absz.as (bs z)
Corresponds to:

Aa. Ab. As. Az. as (b s z)

Church and Scott encodings

» encode data as lambda terms
> continuation passing style

» Church folds vs Scott case analysis

Continuation passing style

the datum is a black box that knows itself

v

v

the datum is passed functions that it calls with its
deconstruction

v

the datum has one argument per constructor

v

each continuation has one argument per constructor argument

Simple types

Church and Scott encoding coincide for simple types.

Bool
Haskell:

data Bool
= False
| True

Church, Scott:

\t f . t
\t f . f

true
false

and = \ab . aba
or =\ab.aab
not = \a . a false true

The datum “true” takes two arguments, and returns the first,
which (by convention) denotes the value True.

Pair

Haskell:

data Pair a b
= Pair a b

Church, Scott:

pair =\abp .pab

fst
snd

\p.p (\ab . a
\p . p (\ab . Db

The datum “pair x y” takes one argument, which is a function of
two arguments, and passes it the stored values of “x” and “y".

Maybe

Haskell:

data Maybe a
= Nothing
| Just a

Church, Scott:

nothing
just

\n j.n
\anj.ja

maybe \n jm.mn j

Either

Haskell:

data Either
= Left a
| Right b

Church, Scott:

left = \a
right = \b
either = \1

.1
. Trb

. €

a

1lr

Recursive types

» Church and Scott encoding differ for recursive types.

» Church encoding uses folds.
The deconstruction continuation threads throughout the
structure.

» Scott encoding is similar to case analysis.
The deconstruction continuation unwraps one layer of
constructors only.

Natural numbers

Haskell:
data Nat
= Zero
| Succ Nat
Church:
zero = \s z . z
succ = \nsz . s (ns z)
Scott:

zero = \s z . z
succ

\nsz.sn

Nat examples
Haskell:

Zero, Succ Zero, Succ(Succ Zero), Succ(Succ(Succ Zero))

Church, applying the same “s” “n” times at once:

\s z . z

\sz .58z

\s z . s (s z)
\s z.s (s (s 2))

Scott, applying different “s” “n" times separately:

\s z . z

\sz.s8 (\sz .2z

\sz .8 (\sz.s8 (\sz.2)

\sz .85 N\sz.sO\sz.s (\sz.2z)))

Church Nat succ

zero = \s z . z
succ = \nsz.s (ns z)

succ zero
= {- definition of succ -}
(\n sz .s (ns z)) zero
= {- beta -}
\s z . s (zero s z)
= {- definition of zero -}
\sz.s8 ((\sz.2)sz)

= {- beta -}
\sz .8 ((\z .2 2
= {- beta -}

\s z .8z
= {- definition of one -}
one

Scott Nat succ

zero = \s z . z
suicc = \nsz . sn

succ zero

= {- definition of succ -}
(\n s z . s n) zero

= {- beta -}
\s z . s zero

= {- definition of zero -}
\sz.s58 (\sz .2z

= {- definition of one -}
one

Nat arithmetic

Church:

add = \mn . msuccn

mul = \mn . m (add n) zero
exp=\mn .nm

Scott, open terms with letrec:

add = \mn . m (\p . succ (add pn)) n
mul =\mn .m (\p . add n (mul p n)) zero
exp=\mn . n (\p . mlmn (expm p)) one

Scott, closed terms with fix:

add = fix (\add . \mn . m (\p . succ (add p n)) n)
mul = fix (\mul . \mn . m (\p . add n (mul p n)) zero)
exp = fix (\exp . \mn . n (\p . mul m (exp m p)) one)

Fixed point combinator

Semantics:

fix £ = £ (fix f)

Implementation:

\f . (\x . £ (xx)) (\x . £ (xx))

What it computes:

» The unique least fixed point under the definedness order.

» Allows recursive functions to be defined as closed terms.

Nat predecessor

Church (courtesy Wikipedia):

pred =\n fx .n (\gh.h(gf)) N\u.x) \v.vwv

Scott:

pred = \n . n (\p . p) zero

Nat conversion

Church arithmetic is more concise (and doesn't need fix).
Scott predecessor is comprehensible.
Mix and match?

churchToScott = \n . n scottSucc scottZero
scottToChurch = \n . n
(\p . churchSucc (scottToChurch p))
churchZero

scottToChurch = fix (\scottToChurch . \n . n
(\p . churchSucc (scottToChurch p))
churchZero)

Nat subtract and equality
Church:

sub=\mn . n pred m
Scott:

sub=\mn . m
(\p . n (\q . sub p g m
Zero
equal = \mn . m
(\p . n (\q . equal p q) false)
(n (\q . false) true)

Unwrap a layer of constructor from each number and recurse.
There is a different equal for booleans:

equalBool = \a b . a b (not b)

List
Haskell:
data List a

= Nil
| Cons a (List a)

Church:

nil =\cn . n

cons = \xxscn . cx (xs cn)
Scott:

nil =\cn . n

cons = \x Xscn . c X Xs

List operations

Church, Scott:

isnil =\1 . 1 (\x xs . false) true
head =\l .1 (\x xs . x) error

Church (tail courtesy Wikipedia):

length = \1 . 1 (\x xs . succ xs) zero
tail =\lcn . 1
(\xxsg.gx (xsc)) (\xs . n) (\x xs . xs)

Scott:
length = \1 . 1 (\x xs . succ (length xs)) zero
tail =1\1 . 1 (\x xs . xs) nil

More Scott functions

compose = \f g x . £ (g x)

fold =\f el .1l (\xxs . f x (fold f e xs)) e

sum = fold add zero

ands = fold and true

ors = fold or false

map = \f . fold (compose cons f) nil

all = \f . compose ands (map f)

any = \f . compose ors (map f)

take = \n 1. n(\p. 1 (\x xs. cons x (take p xs))nil)nil
drop = \n 1. n(\p. 1 (\x xs. drop p xs) nil) 1

iterate = \f x . cons x (iterate f (f x))

Outline

How to perform lambda calculus

How to perform lambda calculus

> single step graph reduction
» visualisation of current state
» sonification of changes in state

» open terms vs closed terms

Graph reduction

data Term

Free String

Reference Integer

Bound -- de Bruijn index O
Scope Term -—- see Lambdascope paper
Lambda Strategy Term

Apply Term Term

reduce
: Definitions -- Map String Term
-> References -- Map Integer Term
-> Term

-> Maybe (References, Term)

Three kinds of Lambda

» strict (syntax inspired by Haskell's -XBangPatterns):
Av ! 8) t
t is fully reduced before substitution into s.

> copy:
(\v ?s)t

t is substituted for each occurrence of v in s.

> lazy:
(\v . s) t

a new Reference is created for t, and substituted into s.
reduce reduces inside the References until it is irreducible,
at which point the Reference is replaced with the Term it
refers to.

Visualisation

®
o apply o
@ scope @ o
reference @ A [] o

@ reference

bud (shared)

® length (cons a nil)
(with Church data)

Sonification

» count number of nodes of each type
> statistics are forwarded to a Pure-data patch

» changes in each count control a harmonic (one for each type
of node) in a simple phase modulation synth

Open terms

» free variables looked up on demand from environment
> allows definitions to be changed at runtime

> easier to write

Drawbacks of open terms

> no sharing
subterms can be evaluated many times due to duplication

» exponential work (worst case)

» exponential space (worst case)

Fixed points

> closed terms with fixed point combinators
> allows evaluation to be shared

» sharing can be vital for efficiency

Outline

Future work

Better Evaluator

» current evaluator is still somewhat ad-hoc and doesn’t
preserve sharing

» previous evaluator even had correctness bugs

» switch to using Lambdascope (or similar) as a library?

Auto Fix

Automatically translating open terms to use fixed point
combinators:

» recursive functions can use fix

» mutually recursive functions can use fix combined with tuples

many = some ‘orElse‘ none
some = one ‘andThen‘ many

becomes:

manysome = fix (\p -> pair
(snd p ‘orElse‘ none)
(one ‘andThen‘ fst p))

many = fst manysome

some = snd manysome

Magic It

» refer to previously evaluated terms
» including the currently evaluating term

» without restarting evaluation

Haskell example (ghci-8.0.1):

>3
3
> it + b
8
> it * 2
16

Further Performances / Project ldeas

» “An infinite deal of nothing”, a variety of non-terminating
loops each with their own intrinsic computational rhythm.

> Implement in untyped lambda calculus an interpreter for a
known Turing-complete tape mutation based language and
run some simple programs in it.

Illustrates Turing-completeness of untyped lambda calculus,
albeit slowly.

Outline

EOF

EOF

Thanks!
Questions?

https://mathr.co.uk
mailto:claude@mathr.co.uk

https://hackage.haskell.org/package/gulcii
https://code.mathr.co.uk/gulcii

	Lambda calculus encodings
	How to perform lambda calculus
	Future work
	EOF

