Mandulia

A zooming visualization of the Mandelbrot Set as many Julia Sets.

Fractal definitions

The Equation

» does iterating z — z2 + ¢ remain bounded?

Julia Sets J(c)

» fix one ¢ for the whole plane with z, at each point

The Mandelbrot Set M

» vary c over the plane with zg = 0 for each point

The Connection

» we M J(w) is connected

Example

The Mandelbrot Set with some Julla Sets

www,
E ~

o v
o

(source: Falconer “Fractal Geometry: Mathematical Foundations
and Applications”)

Changing Aesthetics

2010-06-29 first test: squares
LT X

e e e e e > S S O O
e e e - e > S © O O
e e e o O O @ @
R AT Rt O A Y A A
-y e e
B AR A aF ¥ 4
S A g

&

w0000

Changing Aesthetics

2010-06-30 second test: diamonds

Changing Aesthetics

2010-07-06 third test: Ammann A3

Changing Aesthetics

2010-07-10: golden sun

£
%
£s o0
4 /6‘, &g ¢ 5

Changing Aesthetics

2010-07-23: neon_

Changing Aesthetics

2010-07-23: neon (still)

Changing Aesthetics

Postcard: optimized for print

Implementation

The main program

» GLUT/OpenGL, initialize threads, interface with Lua

Julia Set renderer

» number crunching C with FFI, concurrency, resource pools

2D point layout

» Ammann A3 substitution tiling, irregular but uniform

Lua scripting

» configure and control animations and interactivity

Implementation

Data flow

The main program

Interaction

» passing user input to Lua scripts

> passing Lua state to view configuration

Calculation

> passing view configuration to Ammann A3 point layout

» adding points to the Julia Set renderer job queue

Visualization

» uploading rendered Julia Sets to GPU textures
» displaying the Julia Sets laid out in space

The Julia Set renderer

Number crunching

» tight loops in C to iterate the equation

» “foreign import” the function from ¢ to image buffer

Concurrency

» multiple worker threads (1 per CPU core)

» each runs the “best right now” job

Recycle resources

> image pool: buffers in CPU memory, re-used after GPU upload

> texture cache: keep only the most relevant points on the GPU

Concurrency and OpenGL

Bound threads

» OpenGL can only be accessed by the “main” bound thread
> so, the Julia renderers cannot upload to GPU directly

» similarly the Lua virtual machine might not be thread-safe

Smooth appearance

» unpredictability of time taken to render each Julia Set
» so, number of images to upload each frame varies

» reduce jitter: swapBuffers at start of display callback

Job queue

High priority

> points that are visible but have no Julia Set yet
» points that are nearby and might be visible soon

» priorities can change every frame

Difficulties

» hard (impossible?) to abort “foreign” jobs
» limited GPU resources: cache the most relevant

» slowly completed jobs might now be irrelevant

Ammann A3

Substitution tiling

» similar to a quad tree, but instead of squares...
» ...three differently shaped tiles
» inflation factor ¢ = (v/5 +1)/2

Attractive properties
» fixed point in rules gives stable zoom
» aperiodic (maybe?), irregular, ...

» ...but still has uniform point density

Ammann A3 rules

Diagram

(source: http://tilings.math.uni-bielefeld.de)

http://tilings.math.uni-bielefeld.de

Ammann A3 implementation 1/4

Tiles, rules, 1Ds

data Tile = A | B | C — tile shape

data TrID =T1 | ... | T9 — (sub)rules

— affine transformations from rules
transforms :: Tile — [(Tile, (Matrix, TriD))]
boundsO :: Tile — Bounds — initial bounds
normalizelD :: [TrID] — [TrID]

normalizelD = dropWhile (T7 ==) — fixed point
idTolnteger :: [TrID] —> Integer

idTolnteger = foldr ...

idToLevel :: [TrID] — Int

idToLevel = length

Ammann A3 implementation 2/4

Trees

—— transformed tiles

data Tile'' = Tile'" Tile [Trld] Matrix
— immediate ‘‘children ’’

builder :: Tile'" — [Tile "]

— build a tree (a variant of unfoldTree)
tree’ :: Tile'' —> Tree Tile "’

tree’ = unfoldTree2 builder

—— annotated tiles with depth <= level

data Tile’' = Tile' Tile [Trld] Bounds
Vertex Int Int

— with a specified maximum radius

tree :: Real —> Tree Tile’

Ammann A3 implementation 3/4

Zooming

data AmmannA3 = AmmannA3
(Forest Tile') — tiles within bounds

(Forest Tile') — tiles overlapping bounds
Bounds — bounding box
Real — in—radius
ammannA3 :: Bounds —> AmmannA3
—— fails when new bounds aren 't inside
zoomTo :: Bounds —> AmmannA3 —> Maybe AmmannA3
—— add another level of detail
stepln :: AmmannA3 —> AmmannA3
—— flatten
tiles lod = map rootlLabel
(\ a3 — outer a3 ++ inner a3)
(! lod) . iterate stepln

Ammann A3 implementation 4 /4

Pruning when zooming

—— partition tiles

triPart :: Bounds —> Forest Tile'
—> (Forest Tile' — inside bounds
, Forest Tile' — overlapping
, Forest Tile' — outside bounds

)

Stepping in

» only check the overlapping tiles
» children of inside tiles will be inside

» outside tiles have been discarded already

Ammann A3 profiling 1/2

Heap profile with too much sharing: > 400MB

Lt

bytes
£

1

Ammann A3 profiling 2/2

Heap profile with recomputation: < 7MB

0

g M YL i PP Y W ulWriprvir A W T
A‘:,! n—wnﬂ\ﬁyﬂr‘ug-m;av’u@lvwwl "\\r\-.r g@”lgqqug‘!lgviu
0

200 | 400 | 600 | 800 | 1k |12k |14k | 1.6k | 1.8k | 2k |22k | 24k | 2.6k | 28k | 3k |32k

seconds

Lua scripting

Interface

» find scripts using Cabal’'s “Paths_pkg" module

» call Lua functions on events (keyboard, each frame, ...

» read Lua variables for configuration

Warts

» current implementation lacks proper error handling

Demo

(live or video)

Unanswered issues

Priority metrics

» smooth animation step size depends on current zoom level
» prioritization is unevenly spread between translation and zoom

» ...and also varies with the zoom level

Resource pools

» want: bounded number of resources (avoid death spiral)
» want: allocated only on demand (then kept for re-use)

» easy to have just one: both is hard?

The End

Mandulia

» cabal install mandulia
» cabal install mandulia -ffast
» cabal install mandulia -ffast -fSSE4

Claude Heiland-Allen
» http://claudiusmaximus.gotol0.org

» mailto:claudiusmaximus@gotol0.org

