
Kalles Fraktaler 2 +
As the orginal upstream author Karl Runmo says:

Want to create DEEP Mandelbrot fractals 100 times faster than the commercial programs,
for FREE? One hour or one minute? Three months or one day? Try Kalles Fraktaler!

It works by using perturbation techniques and series approximation, to allow faster lower precision number
types to be used for pixel iterations, based on a high precision reference.

I (Claude Heiland-Allen) forked the code and swapped out the custom arbitrary precision floating point
code for highly optimized libraries, making it even faster. Cross-compiled to Windows from Linux
MINGW64. Now with many other enhancements.

Original upstream version:

• http://www.chillheimer.de/kallesfraktaler/

This version:

• https://mathr.co.uk/kf/kf.html

Feedback:

• https://fractalforums.org/kalles-fraktaler/15 current forum
• http://www.fractalforums.com/kalles-fraktaler/ legacy forum (read only)
• mailto:claude@mathr.co.uk?subject=Kalles%20Fraktaler%202 personal mail

Quick Start
• Download the latest archive from the website: https://mathr.co.uk/kf/kf.html#download

• Unzip it wherever you want, no installation required. You need 7-zip to unzip .7z archives,
available from https://www.7-zip.org/.

• Launch kf.64.exe for 64-bit (recommended), kf.32.exe for 32-bit.

• Start exploring!

– Use the mouse scroll wheel to zoom.

– Choose different fractal formulas in the formula dialog (Ctrl-F).

– Choose different bailout conditions in the bailout dialog (Ctrl-B).

– Choose different colours in the colouring dialog (Ctrl-C).

– Zoom deeper more quickly with Newton-Raphson zooming (Ctrl-D).

Limits
• Windows limits bitmap images to 2 giga-bytes (~715 M-pixel)

• Windows limits longest bitmap dimension to 64 kilo-pixels

• KF limits iteration count to 9 exa-iterations

• KF limits periods to 2 giga-iterations

• MPFR limits precision to 2 giga-bits (~646 million base-10 digits)

• KF needs up to ~50 bytes per pixel (typically half that for common uses)

• KF needs up to ~40 bytes per reference iteration (depending on number type)

• KF cannot currently make use of more than 64 CPU threads

1

http://www.chillheimer.de/kallesfraktaler/
https://mathr.co.uk/kf/kf.html
https://fractalforums.org/kalles-fraktaler/15
http://www.fractalforums.com/kalles-fraktaler/
mailto:claude@mathr.co.uk?subject=Kalles%20Fraktaler%202
https://mathr.co.uk/kf/kf.html#download
https://www.7-zip.org/

Known Bugs
• Windows Defender sometimes reports that KF contains malware (false positive, I hope - I check

with virustotal.com and all seems fine) (possibly due to screenshots for crosshair window, some
code also moves the mouse cursor)

• out of memory conditions cause crashes (for example, if bitmap creation fails - also need to check
huge sizes) (reported by gerrit)

• setting window size too big (eg width 12800) makes it disappear while KF is still running (in Wine
on Linux/XFCE)

• increasing window size when window is near the top can make the title bar go off screen. workaround
for Windows 10: Alt+Space+M, or Shift+RightMouse on program icon in the task bar and select
Move; then use cursor keys to move the window; press RightMouse to finish. workaround for
Linux/XFCE: hold Alt and drag the window with LeftMouse button (from any point inside it).
(reported by saka)

• resizing window during examine zoom sequence auto solve glitches leads to corruption of the zoom
sequence data

• “stop autosolve” during examine zoom sequence fails and corrupts zoom sequence
• minimizing window during zoom sequence rendering corrupts image (saves blank image or repeated

frame) (reported by gerrit and CFJH)
• with “reuse reference”, corrupt image at transition between number types (eg e600) (reported by

CFJH) - workaround is to render in segments or force the number type higher (“use long double
always”, “use floatexp always”)

• on special locations kf renders endless references and comes to no end (reported by CFJH)
• with glitch center found by argmin|z|, endless references with little progress (reported by gerrit,

only some locations)
• analytic DE broken with some power 3 Mandelbrot locations (reported by gerrit) (workaround is to

disable series approximation)
• fractal type out of range (e.g. parameter from newer KF) is silently reset to Mandelbrot
• “resume zoom sequence” re-uses last set zoom count limit
• “resume zoom sequence” sometimes uses wrong image size (depending on settings and whether

there are last.kfb, recovery.kfb, *_*.kfb)
• “examine zoom sequence” doesn’t save corrected PNG images during glitch solve
• black regions when rendering zoom out sequence (maximum iterations are reduced too much before

spirals appear in next frame) (reported by gerrit) workaround is to disable auto-iterations
• there is still a race conditions in guessing (doesn’t wait for previous progressive interlacing pass to

be 100% done before the next one starts)
• newton-raphson zoom preset depths are bad for formulas with power other than 2
• burning ship series approximation stops at first fold (typically 1 period of a central miniship), could

potentially subdivide the region (and shift the series, for the folded part) and carry on?
• burning ship series approximation probe points might miss some folds near the edges of the image

(need to increase probe point density?)
• bad combinations of skew, distance estimation, and series approximation
• scaled (long) double yr,yi can underflow to 0, eventually causing derivatives to be too small and de

overflows to infinity -> blank screen: workaround is to force long double or floatexp as appropriate
• auto skew (escape) button doesn’t work well with some formulas (eg SimonBrot)
• navigation with scroll wheel and -/+ keys is hardcoded to factor of 2 instead of using the zoom size

set in the View menu
• NR zoom doesn’t work well in skewed locations
• nanomb1/2 OrderM, OrderN can only be changed by hand-editing .kfs Settings files
• nanomb2 RadiusScale can only be changed by hand-editing .kfs Settings files
• nanomb1/2 number type fixed to floatexp (long double or double would be faster)
• nanomb1/2 number type is not rescaled (only matters for long double / double)
• nanomb2 currently disables glitch detection and correction
• nanomb1/2 reference calculations are not multithreaded (single core only)
• nanomb1/2 reference calculations are using slow Boost C++ wrapper for MPFR
• kf-tile.exe doesn’t support skew yet
• help button in file browser does nothing
• may be difficult to build the source at the moment (dependency on ‘et’)

2

Differences From Upstream 2.11.1
Incompatible Changes

• In versions 2.14.10 and above, new controls for custom bailout escape radius; bailout norm
power can be customized; bailout real/imag factors can be fractional and/or negative; the smoothing
method is decoupled from escape radius; there is a new phase channel (T in EXR), with “phase
strength” colour control; the texture information is saved and loaded from parameters; new fourth
root transfer function (color method 11)

• In versions 2.14.9 and above, the new formula zˆ2 exp(2 a / z) + c is not available in
earlier versions.

• In versions 2.14.8 and above, the iteration count limit is raised above 2 giga-iterations. Pa-
rameters with such high iterations counts will load incorrectly in earlier versions.

• In versions 2.14.8 and above, directional DE is saved in EXR files using DEX and DEY channels,
instead of distance using DE channel. Old EXR files’ DE can not be re-loaded in newer versions, and
new EXR files’ DEX and DEY can not be re-loaded in older versions.

• In versions 2.14.7 and above, the new “LogLog” and “ATan” iteration count transfer functions
(ColorMethod 9 and 10) are not available in earlier versions.

• In versions 2.14.5 and above, the new “Low bailout” (SmoothMethod: 2) is not available in
earlier versions.

• In versions 2.14.5 and above, the two new General Abs Quadratic formulas are not available
in earlier versions.

• In versions 2.14.4 and above, the new “Mothbrot” formulas are not available in earlier versions.

• In versions 2.14.3 and above, colouring of zoomed out views is fixed, and may be different from
earlier versions.

• In versions 2.14.1 and above, there are two new formulas which are not available in earlier
versions.

• In versions 2.13.1 through 2.13.9, derivatives are calculated by default. In versions 2.14.1
and above, you need to enable the derivatives calculations (in the Iterations dialog, or via a settings
file) if you want to use analytic distance estimation colouring. Derivatives are not available in earlier
versions.

• In versions 2.13.1 through 2.13.4 inclusive the interior is white. In 2.13.5 and above it
is user-settable, defaulting to black, Parameter files made with earlier 2.13 versions should be
modified to explicitly set a white interior colour. In earlier versions (including upstream 2.11.1)
the interior is black with no way of changing it.

• In version kf-2.12.10 only the jitter is “Gaussian” with no way of changing the shape. In
2.12.11 and above, the shape can be changed, and the default is now “uniform”. Earlier versions
(including upstream 2.11.1) do not support jitter at all. To get the same results as 2.12.10 you
must enable the Gaussian jitter checkbox and set the jitter scale box to 1.

• In version kf-2.12.1 and above, DE colouring method #5 is once again backwards compatible
with upstream 2.11.1. Parameter files made with 2.11.1+gmp.DATE versions should be modified
to use Distance (Square Root) colouring method #8.

• In version kf-2.11.1+gmp.20170822 only, DE colouring method #5 used log instead of sqrt for
a more perceptually linear effect. In later versions, this log scaling is achieved with a new colouring
method #7, while the DE colouring method #5 reverts to sqrt as before. The new colouring method
ID allows old 2.11.1+gmp.DATE parameter files to be loaded into current versions and display as
intended. Any parameter files saved with the new Distance (Logarithm) colouring method will not
display as intended in older versions. Parameter files using Distance colouring method saved with
this particular version should be modified to use Distance (Logarithm) in the latest version.

• multiple finite difference methods for distance colouring (only the default Traditional is available
in 2.11.1).

3

• analytic DE colouring with derivatives (not available in 2.12.x or earlier).

Other Changes

• Makefile build system using MINGW to cross-compile to Windows from Linux
• uses GMP+MPFR for arbitrary precision floating point instead of custom code
• uses Boost wrapper around MPFR floats for higher-level coding
• use installed JPEG library, instead of bundled sources
• long double support built into EXE (no separate DLL needed)
• virtually unlimited precision (memory needed for precise numbers is an issue)
• threaded calculations reimplemented with barriers to avoid WINE slowdown
• workaround for WINE issue artificially limiting image size (up to 2GiB now)
• bugfix: inflection performance issue (was converting number types needlessly)
• bugfix: cross-hair resource issue (reported and fixed by Kalles Fraktaler)
• miscellaneous code cleanups (-fpermissive fixes, const fixes, delete[] fixes, 64bit compatibility

paranoia)
• formula inner loops generated at compile time from high level specification XML using XSLT and a

preprocessor implemented in Haskell
• optimized some reference calculations by floating temporaries out of loops
• XML preprocessor optimizes more reference calculations in the same way
• optimized Newton-Raphson zooming by using lower-level GMP calls
• save images to PNG, TIFF and EXR format as well as JPEG
• colouring uses floating point internally (fewer quantisation steps)
• dithering at end of colouring to improve perceptual quality (reduced banding)
• “glitch low tolerance” checkbox that can be enabled to detect glitches more aggressively (disabled

by default, enable it if you get undetected glitches)
• updated program icon with transparent background and large version
• parameter data is saved as comment in image files (all formats)
• preferences (rendering settings not related to location) save and load (.kfs files and image comments

too)
• command line arguments to load settings and/or location
• command line arguments to render and save images / maps before quiting
• see change log below for more. . .

Change Log
• kf-2.14.10.6 (2020-11-24)

– fix long double rendering for formulas with abs (reported by Mr Rebooted)
– fix floatexp rendering for fractional bailout norm power
– fix some float conversion warnings and potential problems
– make prepare script modular (second argument determines libraries to build, default is all

libraries)
– patch OpenEXR to try to fix issues with non-ASCII paths onWindows (reported by Ookamitada

Shirohi)

• kf-2.14.10.5 (2020-11-18)

– fix scaled long double rendering (broken since 2.14.8) (reported by CFJH)
– fix SIMD assertion failure in 32bit build (reported by gerson)
– upgrade to gmp 6.2.1

• kf-2.14.10.4 (2020-11-10)

– fix “solve glitches by random choice” not having enough entropy in command line rendering
(picking the same point over and over with no progress)

– switch MinGW compiler threading model from win32 to posix: no longer need to patch
OpenEXR to use mingw-std-threads (the latter is no longer needed at all)

– rebuild all dependencies for the win32 to posix switch
– patch OpenEXR to avoid calling _wsopen_s which does not exist in ReactOS’ msvcrt.dll
– adjust build system to ensure stdc++ and pthread libraries are statically linked

4

– explicitly target Win32 API version 0x501 (Windows XP)
– return of 32bit builds to the distribution
– updated Linux build documentation and scripts (native Windows build instructions and scripts

are out of date)
– documentation improvements (thanks to FractalAlex)

• kf-2.14.10.3 (2020-10-08)

– fixes

∗ assertion failure loading some formulas (reported by panzerboy)
∗ bailout iteration count is reset to 1000 when zooming in quickly after toggling fullscreen
(reported by FK68)

∗ guessing exterior gives poor quality images (reported by PrinceOfCreation)
∗ crash when zooming too quickly near interior black regions (reported by Foxxie) (may
have already been fixed in an earlier version)

∗ speckles when rendering zoom out sequence (may have already been fixed in an earlier
version)

– library upgrades

∗ upgrade to boost 1.74.0
∗ upgrade to openexr 2.5.3
∗ upgrade compiler to g++-mingw-w64 10.1.0-3+23 (Debian Bullseye/testing) and rebuild
everything

• kf-2.14.10.2 (2020-07-12)

– fixes

∗ store zoom out sequence was saving JPEG contents in PNG filenames sometimes
∗ store zoom out sequence was forcing some kind of center reuse even when not requested
(reported by saka and Azula)

∗ store zoom out sequence was sometimes not saving metadata in image files correctly
∗ setting bad SIMD vector size in KFS could crash (reported by FractalAlex)
∗ setting window size/image size from KFS should be better behaved now
∗ refactor default loading (now it loads default location kf.kfr from next to EXE, as well as

default settings kf.kfs; defaults are only loaded when respective command line options are
not given)

∗ don’t recalculate fractal when changing window size (reported by FK68)
∗ fix buffer overflow crash in iterdiv -> string for GUI, also fix loss of precision (reported by
FK68)

∗ fix typos causing last few pixels to be corrupt in SIMD
∗ remove annoying dialogs about derivatives (requested by gerrit)

– library upgrades

∗ upgrade to boost 1.73.0
∗ upgrade to mpfr 4.1.0
∗ upgrade to tiff 4.1.0
∗ upgrade to glm 0.9.9.8
∗ upgrade to openexr 2.4.2

– library non-upgrades

∗ don’t upgrade to pixman 0.40.0 (https://gitlab.f reedesktop.org/pixman/pixman/-
/issues/43)

• kf-2.14.10.1 (2020-06-01)

– fixes

∗ location dialog is smaller (by popular request)
∗ inverse colour transition (reported by FractalAlex)
∗ information dialog shortcut (reported by gerrit)
∗ information dialog close (reported by gerrit)

5

https://gitlab.freedesktop.org/pixman/pixman/-/issues/43
https://gitlab.freedesktop.org/pixman/pixman/-/issues/43

∗ information dialog OK button (reported by gerrit)
∗ Newton progress backup autosave can be disabled (reported by gerrit)
∗ can again set custom max references and series approximation terms (in new Perturbation
and Series Approximation Tuning dialog) (reported by gerrit)

∗ crash when loading default settings with non-standard image size
∗ replaced custom buggy tooltip code with standard Windows controls
∗ resume zoom sequence works with no recovery.kfb (reported by Azula)
∗ crash when invoking resume zoom sequence while rendering in progress

• kf-2.14.10 (2020-05-25)

– speed boosts

∗ Mandelbrot power 3+ and TheRedshiftRider formulas Newton zooming: twice as fast
∗ Mandelbrot power 3 perturbation: 50% faster
∗ Mandelbrot power 3 rescaled perturbation: 7.5% faster
∗ “find glitch center using argmin|z|” is now parallelized (suggested by gerrit)
∗ “find glitch center” (using original method) memory (de)allocation floated out of inner
loop (slowness reported by gerrit)

∗ OpenEXR usage is now optionally parallelized (enabled by default) (disabling reduces
memory consumption and total work performed, but usually increases wall-clock time
significantly)

– enhancements

∗ Show Inflection generalized to arbitrary power Mandelbrot (behaviour for power 2 is
slightly different, but more correct)

∗ better progress reporting for Newton-Raphson zooming (especially noticable for formulas
other than Mandelbrot power 2)

∗ use ball method for Newton-Raphson period finding by default (works much better than
box method in skewed locations)

∗ new setting “Save As -> Set EXR save channels” for choosing which channels to store in
EXR files (for conserving disk space when not all of the data is needed in later processing)

∗ default settings loaded from next to EXE file (kf.exe -> kf.kfs)
∗ “Save KFR” option for Store Zoom Out Sequence, also --save-kfr command line flag
(suggested by Fluoroantimonic_Acid) (note that metadata is already saved in all formats
apart from KFB)

∗ “Save KFR” is fast if no images will be saved (currently only fast in command line mode,
and auto-iterations does not work because no images are rendered to be analysed)

∗ split up Iterations dialog into Formula, Bailout and Information, with some controls going
to the Advanced menu. keyboard shortcuts changed: Ctrl+F formula dialog, Ctrl+B
bailout dialog, Ctrl+I information dialog (previously iterations dialog), Ctrl+Shift+F find
center of glitch (previously Ctrl+F), Ctrl+Shift+B skew animation (previously Ctrl+B)

∗ new p-norm options in the Bailout dialog, radius is tested against

p

√
|bx|zx|p + by|zy|p|

(suggested by FractalAlex)
∗ new Flat colouring mode for when disabling Smooth is not enough (Linear smooth method
is recommended; Log can give seams)

∗ “Random” method for choosing new references among glitched pixels, is sometimes
better/worse than the “Original” and “argmin|z|” methods (suggested by gerrit)

∗ Colors dialog has filename of last loaded file in its title (suggested by gerrit)
∗ Fourth Root color method (iteration count transfer function) (ported from Mandel Machine,
suggested by FractalAlex)

∗ new phase channel (T in EXR) based on argument angle of final iterate
∗ “Phase Strength” colouring control uses new phase channel (“chrome effect” colouring
suggested by FractalAlex)

– fixes

6

∗ stopping rendering with ESC leaves image as-is, instead of recolouring from scratch (badly)
(reported by CFJH)

∗ status bar correctly resets when zooming before the previous image is completed
∗ multiline widgets in location dialog fixes editing problems (reported by CFJH)
∗ newton-raphson zooming increases maxiters more suitably
∗ clamp crosshair window read region to screen size (prevent strobing display of uninitialized
memory)

∗ fix crash when zooming out by a huge custom zoom factor (2ˆ25) (reported by CFJH)
(divide by zero in StretchBlt())

∗ fix crashes when resizing window by dragging frame corner by setting a minimum size
∗ glitches are detected with 2-norm always (regardless of p-norm)
∗ series approximation uses low bailout radius (fixes far exterior)
∗ store zoom out dialog does not proceed to ask for size when cancelled (reported by saka)
∗ add prepare-msys.sh to release bundle (reported by PieMan597)
∗ fixed -Wnarrowing warnings
∗ fixed loading of power setting for fractal types 1-4 (e.g. power 5 burning ship now loads
correctly) (bug found thanks to FractalAlex)

∗ fixed texture option in colouring settings (broken for years) (reported by FractalAlex)
∗ simplified by enforcing “reference pixel is never glitched” in a different way than duplicating
pixel iterations in the reference code

∗ NanoMB1+2 support directional DE
∗ NanoMB1 iteration count was off-by-one compared to the regular way
∗ EXR input and output uses much less memory as it no longer needs to copy so many of

the data arrays; overhead for output is now 8 bytes per pixel (12 bytes for more than 4G
iteration count images) plus 6 bytes per pixel if RGB is used (tip: enabling the half colour
buffer preallocates this and saves an extra colouring pass)

∗ “Fast” shrinking is used while rendering is still ongoing (prevents denial of service when
updates are queued faster than they can be handled)

∗ “Best” shrinking is always used when saving images
∗ image size adjuster uses aspect ratio from window, instead of the current image size
(prevents weird heights after setting width to odd values like 463) (reported by saka)

– library upgrades

∗ upgrade to openexr-2.4.1
∗ upgrade to glm-0.9.9.7
∗ upgrade to gmp-6.2.0
∗ upgrade compiler to g++-mingw-w64 9.3.0-8+22 and rebuild everything

• kf-2.14.9 (2019-12-31)

– feature: new formula zˆ2 exp(2 a / z) + c (suggested by gerrit); set seed to 0 (default) for
singular orbit; set seed to a for critical orbit (large |a| bugs at zooms <= 1e3); no Newton
zooming yet; thread: https://fractalforums.org/f/28/t/3234

– feature: use minimum |z| pixels for new references (suggested by quaz0r) (option disabled by
default as it is not always faster)

– feature: save file format version number with parameters and settings
– feature: documentation improvements (references to third-party software and EXR map file

semantics)
– bugfix: don’t set zoom size when resuming zoom out sequence (now you need to set it manually

before resuming) (fixes issue where it was clamped to integer; reported by david)
– bugfix: clamp half-precision colour output in EXR (fixes issue with NaNs)
– bugfix: interpolate neighbourhood when ignoring isolated glitches (appearance should be

smoother, especially analytic DE was broken before)
– bugfix: avoid assertion failure when loading a parameter with fractal type out of range (instead

unknown formulas appear incorrectly as Mandelbrot) (reported by gerrit)
– bugfix: remove -pipe from Makefile to allow builds with smaller RAM
– bugfix: updated Windows/MSYS2 build instructions (thanks to Patrick Owen)
– upgrade to boost 1.72.0
– upgrade to glm 0.9.9.6

7

https://fractalforums.org/f/28/t/3234

– update openexr repository url
– update pixman build to skip demos
– enable fat gmp build (with runtime CPU detection for faster reference calculations)
– feature: experimental OpenCL support for GPU rendering (not built by default, enable it at

build time with make clean && make OPENCL=1)

• kf-2.14.8 (2019-09-23)

– feature: SIMD support. Adjustable tuning parameters SIMD vector size (default 2) and chunk
size (default 64) settings in the Advanced menu. Should speed up perturbation calculations in
double precision (up to zoom depth 1e300 or so). SIMD is also supported in scaled double
for Mandelbrot power 2 (zoom depth 1e600 or so) and power 3 (zoom depth 1e400 or so).
SIMD is not yet implemented for scaled double with derivatives. Compile KF yourself with
optimisations for your own specific CPU for a bigger speed boost.

– feature: Newton-Raphson zooming completion estimate (number of steps)
– feature: Newton-Raphson zooming progress backups (after each step)
– feature: fewer required fields when loading location parameters (allows loading the NR-zoom

backups)
– feature: directional DE stored in EXR as DEX and DEY channels, and used for slopes colouring

with Analytic differences (requires derivatives, fixes noisy texture when jitter is enabled)
– feature: 64bit iteration count support (limit is now 9 exa-iterations up from 2 giga-iterations),

use EXR for export. This feature is very experimental, I haven’t had the patience to test it
properly. Please report back success or failure.

– note: periods are still 32bit and limited to 2 giga-iterations
– bugfix: command line –save-exr now sets non-interactive mode flag.
– note: built for 64bit only; 32bit hardware is obsolete by now.
– note: distribution package compressed with 7-zip for smaller size.
– upgrade to openexr 2.4.0
– upgrade to mingw64 g++ 9.2.1-8+22~exp1 (Debian experimental) and rebuild everything

• kf-2.14.7.1 (2019-08-30)

– bugfix: iteration data channels are no longer incorrectly vertically flipped when saving and
loading EXR files; they now should match the RGB orientation

– feature: optionally disable threaded reference calculations
– bugfix: the 20% performance regression vs kf-2.12 has been fixed
– bugfix: “save overwrites” now saved in .kfs settings files

• kf-2.14.7 (2019-08-29)

– feature: save EXR (combined image with iteration map data and metadata) and open
EXR (as settings, location or iteration map data). For motivation and specifications see
https://fractalforums.org/f/11/t/3017.

– feature: LogLog and ATan color methods (iteration count transfer functions) (ported from
Mandel Machine, suggested by Dinkydau)

– feature: option to control overwriting existing files with Save/Ctrl-S. With overwrite disabled
by default, KF will save files with a timestamp before the .kfr extension, preventing accidental
data loss (suggested by fractal). The previous behaviour can be restored in the Advanced
menu.

– feature: option to reduce thread count by 1 (suggested by saka)
– bugfix: set thread background mode for improved responsiveness (reported by saka)
– bugfix: remove annoying warning dialogs from store zoom out sequence (reported by saka)
– bugfix: size status bar sections proportionally to window width (fixes accessibility issues with

non-standard system font size) (reported by fractal)
– bugfix: make Octave/Matlab scripts into function files for broader compatibility (usage example:

stratify("tile",4)) (bug reported by Chronicler1701, fix suggested by gerrit).
– new dependency: mingw-std-threads git
– new dependency: ilmbase 2.3.0
– new dependency: openexr 2.3.0
– upgrade to boost 1.71.0
– upgrade to gsl 2.6

8

https://fractalforums.org/f/11/t/3017

• kf-2.14.6.1 (2019-07-19)

– bugfix: load palette after map in command line rendering so that the colours from the palette
are actually used (reported by blob)

• kf-2.14.6 (2019-07-18)

– new feature: high quality image downscaling with anti-aliasing using the Pixman library
– new feature: ball method for period detection in Newton-Raphson zoom
– new feature: command line KFB map colouring
– bugfix: image is refreshed from first calculated pixels, instead of 1% (reported by Fluoroanti-

monic_Acid)
– bugfix: don’t read Iteration Divisor from KFB map files (for historical reasons this is an integer

in the file format, instead of the floating point value that it can take now in the rest of the
program)

– upgrade to boost 1.70.0
– upgrade to mpfr 4.0.2p1
– upgrade to png 1.6.37
– upgrade to glm 0.9.9.5
– upgrade to mingw64 g++ 8.3-win32 20190406 and rebuild everything

• kf-2.14.5 (2019-03-20)

– new feature: command line zoom sequence rendering with -z NFRAMES flag
– new feature: low bailout (SmoothMethod: 2) (suggested by Dinkydau) https://fractalforums.

org/f/28/t/2594/msg12801#msg12801
– new feature: General Abs Quadratic formulas (inspired by Alef and gerrit) https://fractalfor

ums.org/f/28/t/2653/msg13242#msg13242
– bugfix: thin black line in exterior between iteration bands (reported by CFJH)
– bugfix: malformed location no longer crashes (reported by Foxxie)
– upgrade to mpfr 4.0.2
– upgrade to glm 0.9.9.4

• kf-2.14.4 (2019-01-18)

– new feature: nanomb1 algorithm for power 2 Mandelbrot (experimental) (originally by knighty)
(not quite as experimental as nanomb2, suggested by gerrit, requires exact period to be set by
Newton or location dialog)

– new feature: make interior checking for nanomb optional (new menu item)
– new feature: RadiusScale setting for nanomb2 (only settable in .kfs so far, default value 0.1

may be safe but slow)
– new feature: Mothbrot family of formulas (suggested by simon.snake) (not optimized yet,

preliminary version for testing)
– bugfix: incremental drawing looks much better with slopes and/or nde (there is a crosshair

visible while rendering, which disappears when the image is finished, not sure why this happens)
– upgrade to libpng 1.6.36
– upgrade to libtiff 4.0.10
– upgrade to libmpfr 4.0.1-p14
– upgrade to boost 1.69.0

• kf-2.14.3 (2018-10-29)

– new feature: nanomb2 algorithm for power 2 Mandelbrot (experimental) (originally by knighty)
– new feature: display Newton period (and set limit for nanomb2 algorithm) in Location dialog
– new feature: Ctrl-Shift-W shortcut to set image size (suggested by gerrit)
– bugfix: distinguish dialog titles for set window size and set image size
– bugfix: fix corrupt images when zooming out from the default view
– new feature: dialogs to en/disable derivatives when opening file with/out analytic DE; auto-

matically enabling derivatives if needed in CLI mode (reported by gerrit)
– default zoom size changed from 4 to 2 (press Ctrl-4 to reset to 4, or load a settings file with

your preference) (suggested by gerrit, to avoid the dreaded “zoom size is not 2” warning when
saving zoom out sequence).

– merged changes from 2.13.11

9

https://fractalforums.org/f/28/t/2594/msg12801#msg12801
https://fractalforums.org/f/28/t/2594/msg12801#msg12801
https://fractalforums.org/f/28/t/2653/msg13242#msg13242
https://fractalforums.org/f/28/t/2653/msg13242#msg13242

• kf-2.13.11 (2018-10-29)

– bugfix: make preprocessor compatible with ghc-8.6 (MonadFail)
– bugfix: fix translation with reuse reference enabled (reported by Dinkydau)
– bugfix: don’t add additional references if autosolve is disabled
– upgrade to libpng 1.6.35

• kf-2.14.2 (2018-10-23)

– bugfix: initial window size was off by a few pixels
– new feature: undo/redo (menu and Ctrl-Z, Ctrl-Y) (suggested by TwinDragon)
– new feature: added copy/paste to menu (Ctrl-X, Ctrl-V worked already)
– new feature: Ctrl-Shift-K shortcut to reset skew
– new feature: Ctrl-Shift-T shortcut to reset rotation
– bugfix: minor improvements to documentation
– bugfix: fix series approximation derivative initialization
– internal: refactor series approximation for Mandelbrot power > 2
– merged changes from 2.13.10

• kf-2.13.10 (2018-10-23)

– bugfix: corrupt image at transition between number types (eg near e600) (reported by CFJH)
– bugfix: changing “threads per CPU” during rendering crashes (reported by CFJH) (the menu

is now disabled during rendering)
– bugfix: set approx terms to 3 for other than power 2 Mandelbrot
– bugfix: fix floatexp toString for negative values and 0
– internal: update to et-kf API version 5

• kf-2.14.1 (2018-09-27)

– new feature: series approximation for Burning Ship power 2, using case analysis to know how
it gets reflected at each iteration

– two new formulas: General Quadratic Minus, General Quadratic Plus; “RedShiftRider factor
A” sets coefficients (suggested by gerrit)

– new feature: “Fast” preset activated by default
– new feature: GUI menus reorganized to make more sense and updated the manual to reflect

this
– new feature: “check for updates” option in the file menu (requires internet access)
– new feature: 1/4 and 1/2 threads per CPU settings (minimum 1 thread)
– new feature: optional use of d/dZ in autoskew escape (suggested by gerrit)

• kf-2.13.9 (2018-09-06)

– new feature: auto skew without miniset: new button in Newton-Raphson zooming dialog,
“Auto Skew (Escape)”, that skews at the center pixels (algorithm suggested by gerrit)

– bugfix: set window title on parameter drag and drop (reported by gerrit)
– bugfix: reading PNG metadata works even if it is moved after the image data chunks and has

a miscapitalized “Comment” keyword
– bugfix: fix Mandelbar derivative calculations for ADE (reported by gerrit)
– bugfix: fix 4th False Quasi formulas Newton-Raphson zooming

• kf-2.13.8 (2018-08-28)

– new feature: auto skew (via Newton-Raphson zooming dialog)
– new feature: show/hide crosshair window (suggested by gerrit and others)
– new feature: quality presets (“fast” but inaccurate, “best” but slow)
– new feature: page up / page down keyboard shortcuts to zoom in / out
– new feature: drag-and-drop parameter files from the file manager to the main window to open

them
– new feature: drag-and-drop palette files from the file manager to the color dialog window to

open them
– new feature: CLI prints total remaining pixels (suggested by gerrit)
– bugfix: suppress error dialogs when loading metadata from TIFF
– bugfix: remove obsolete .ini stuff that was overriding default settings

10

– bugfix: enabled “no reuse center” by default (without it zoom out sequence sometimes glitches)
– major documentation improvements
– new dependency: GLM 0.9.9.0

• kf-2.13.7 (2018-08-14)

– export to uncompressed TIFF images (faster than PNG, but larger) (suggested by gerrit)
– nicer default palette
– upgrade to Boost 1.68.0
– upgrade to MPFR 4.0.1-p13

• kf-2.13.6 (2018-08-02)

– fix for “a single dot appears in the middle of a mini” (reported by gerrit)
– fix for “zooming out saves Zoom 0 in KFR parameter file” (reported by CFJH)
– “open map” function (file menu) workflow: open KFR, ESC to abort, open KFB, adjust

colours, save image (ignoring the warning about a KFB map existing with the same name)

• kf-2.13.5 (2018-06-26)

– colouring is parallelized for speedup when multiple cores are available
– only sort pixel indices in interactive mode (speeds up batch mode)
– palette loading fixed to load all colouring data
– interior colour can be set now, defaults to black
– upgrade to GSL 2.5

• kf-2.13.4 (2018-06-21)

– derivative computations can be switched off in the iterations dialog (increases rendering speed,
breaks analytic DE colouring)

• kf-2.12.13.1 (2018-06-04)

– fix severe performance bug introduced in previous version
– upgrade to Boost 1.67.0
– upgrade to MPFR 4.0.1-p6

• kf-2.12.13 (2018-05-15)

– fix crasher bug relating to series approximation memory allocation (reported by gerrit)

• kf-2.13.3 (2018-05-08)

– Newton-Raphson zooming precision loss bug fix (reported by gerrit)
– Newton-Raphson zooming for Mandelbrot powers 6 7 8 9 10 (reported by gerrit)
– Newton-Raphson zooming size estimate fixed for more formulas (now correctly uses smallest

power instead of largest, for renormalization behaviour near zero)
– Mandelbrot power 6 7 8 9 10 analytic distance estimation bug fixes (reported by gerrit)

• kf-2.13.2 (2018-05-01)

– Newton-Raphson zooming for all formulas (using code generated by ‘et’) (no progress reporting
yet, nor convergence detection for early exit)

– Rˆ2 matrix derivatives for all formulas (fixes analytic DE with skew)
– fix image corruption when enabling guessing with analytic DE
– fix assertion failed popup (race condition between parameter changes and colouring during

rendering) (reported by gerrit)

• kf-2.13.1 (2018-03-30)

– added derivative calculations
– known bug: calculated even if not needed for colouring
– known bug: some derivatives are C approximations instead of Rˆ2 matrix
– analytic DE colouring mode
– known bug: DE data not saved to KFB map files
– interior is white instead of black
– known bug: interior colour should be customizable

11

– series approximation uses Horner’s rule to evaluate polynomials (minor optimisation)
– default settings are best-quality by default

• kf-2.12.12 (2018-03-30)

– Free Software under GNU Affero General Public License, version 3 or greater
– least squares numerical differences (experimental; subject to change)
– Laplacian numerical differences (suggested by gerrit)
– (possibly stratified) tiled settings/parameters generator program
– stratified tiling reassembler GNU Octave script

• kf-2.12.11 (2018-03-12)

– uniform jitter by default (suggested by gerrit)
– Gaussian jitter available as an option
– jitter scale factor setting (suggested by gerrit)
– log verbosity flag for command line rendering
– upgrade to libjpeg6b2 https://jpegclub.org/support/
– fix bug where Ctrl-S would overwrite the wrong file (reported by gerrit)
– fix bug where lines would appear aligned with references (reported by gerrit and CFJH)
– fix “color method and infinite waves are immediately applied” even when colouring is disabled
(reported by gerrit)

• kf-2.12.10 (2018-02-22)

– upgrade to MPFR 4.0.1
– removed some build instructions from README (see the prepare.sh script) (it was too annoying

to have to keep updating everything in two places)
– command line non-interactive mode works without opening a window (suggested by gerrit)
– pixel jitter (dithering of position): set non-zero seed in iterations dialog to enable it, different

seeds give slightly different images which can be stacked later for anti-aliasing as an alternative
to rendering large and downscaling later; helps reduce Moiré grid artifacts at the cost of noise

– “Enable” toggle in colouring dialog: colouring takes long for large images, disable the toggle if
you want to make many changes at once, then click “Apply” or re-enable to see the results
(discussed with gerrit)

• kf-2.12.9.1 (2018-01-24)

– fixed broken “approx low tolerance” checkbox (thanks to Dinkydau)
– fixed NR-zoom dialog to remember custom zoom factor between reopenings (reported by

gerrit)
– fixed initialization of some menu item state on load

• kf-2.12.9 (2018-01-24)

– improved Newton-Raphson zooming dialog, now zooms to a factor between current zoom and
minibrot size (suggested by Dinkydau)

– implemented “scaled long double” iterations for Mandelbrot power 2 and 3, which might speed
up some zooms between e4900 and e9800

– fixed “the maxiterations suddenly resets to some very low value” (reported by gerrit)
– fixed “Newton iterates 100 times before failing”, now fails fast if the C goes outside the target
(reported by gerrit and Dinkydau, fix suggested by knighty)

– fixed “Newton zooms to blank image”, reported by gerrit, fix was to remove a check on the
derivative being huge that was falsely reporting success

– fixed “manual ApproxTerms gets reset to AutoApproxTerms value” (reported by gerrit)
– barrier implementation yields if there are fewer CPUs than threads (fixes very slow Newton-

Raphson zooming and reference calculations on dual-core laptop) (this is the behaviour of
2.12.5 and earlier, but conditional on number of cores)

– upgrade to libpng 1.6.34
– added shell script containing some of the build instructions from the documentation

• kf-2.12.8 (2017-12-22)

12

https://jpegclub.org/support/

– fixed the fix for hang in normalisation (was generating bad images) (reported by gerrit with
bug7.png)

– restore ignoring isolated glitches
– fixed DE spots bug (somehow the reference was being reset to the center of the screen sometimes

without its pixel position being updated) (reported by gerrit)
– fixed bugs with guessing and glitch status (only interpolate when the glitch status of both

neighbours is the same) (caused lines when dragging the view, probably other badness too)
– added logic to prevent too-huge image size being entered via the GUI (settings files are still

not checked. . .)
– clarified store zoom count user interface (reported by CFJH)
– fixed store zoom out for deep zooms (bug reported by gerrit) (the issue was exceptions thrown

by std::stod(), remember to catch them)
– refactor auto iterations (issue reported by gerrit remains unresolved)
– fixed hardcoded count in glitch correction
– use Taylor intervals in ball-period method (code copied from knighty)

• kf-2.12.7 (2017-12-07)

– renabled guessing conditional on menu option (was disabled in 2.12.4 as enabling it made some
random speckles, possibly due to a race condition) (requested by Kalles Fraktaler and Fractal
universe)

– added “threads per cpu core” setting
– compiles clean with -Wwrite-strings
– even lower resolution preview for more intensive locations (suggested by Foxxie) (implemented

with Adam7-style interlacing with circular sorting)
– copy (Ctrl-X) and paste (Ctrl-V) parameters from the system clipboard
– fixed hang crash bug when normalizing smooth iteration values
– use interval arithmetic ball-period method instead of box-period (speeds up Newton-Raphson

zooming a bit) (idea from knighty and gerrit)

• kf-2.12.6 (2017-11-24)

– fix central differences (reported by gerrit)
– fix insufficient precision in Zoom: saved in .kfr (reported by CFJH)
– option to render zoom out sequence without saving KFB maps (suggested by CFJH)
– option to stop rendering zoom out sequence after a certain number of frames (suggested by

CFJH)
– resume zoom sequence works without KFB maps saved every frame (still needs a “last.kfb”,

this is saved automatically when needed)
– barrier no longer yields (fixes priority inversion on heavily loaded systems) (reported by gerrit)
– switch from GMP mpf_t to MPFR (fixes some blank images on load, also some Newton-

Raphson zoom failures - bug involved incorrect normalization) (reported by Kalles Fraktaler
and gerrit)

• kf-2.12.5 (2017-11-02)

– preferences (rendering settings not related to location) save and load (.kfs files and PNG/JPEG
comments too)

– command line arguments to load settings and/or location
– command line arguments to render and save PNG/JPEG/KFB Map before quiting
– auto-added new references recalculate only all glitched pixels (in earlier versions it would

recalculate all pixels with same integer iteration count, which may or may not have been
glitched, and may have missed some glitches)

– glitch correction now uses glitch flag instead of just iteration count (this ensures the reference
is added in a really glitched pixel, so at least one pixel will be fixed by each reference, ensuring
termination with a finite number of references)

– fix bugs with references when calculating their own pixels
– fix off-by-one when references fix their own pixels (reported by gerrit)
– single pixel glitches are no longer fixed by copying neighbour
– fixed glitch at image boundary correction
– fixed memory leak in glitch correction

13

– fixed horizontal line corruption in examine zoom sequence glitch correction (reported by Fractal
universe)

– fixed “Mandelbar Celtic” formula (reported by Kalles Fraktaler)
– fixed “Mandelbar” formula (reported by Foxxie)
– fixed “Burning Ship Power 4” formula (reported by Foxxie)
– fixed complex formulas reference precision problems (reported by Foxxie)
– fix for auto-iterations (now respects GUI) (reported by Foxxie)
– fix for crash selecting invalid power (reported by Foxxie)
– fix for gigantic zoom value bug in Newton zooming (reported by Foxxie and gerrit)
– added “no reuse center” option to prevent rectangle pasting (suggested by quaz0r)
– fix for signed integer overflow reports negative percentage in status bar when the number of

iterations is large (reported by Foxxie and another)
– fix for confusing PNG save options dialog called “JPEG properties”
– major code refactoring into multiple files for ease of maintenance
– delete no-longer-used single-threaded Newton-Raphson zooming code

• kf-2.12.4 (2017-10-06)

– “glitch low tolerance” checkbox that can be enabled to detect glitches more aggressively
(enabling it allows “Olbaid-ST-023.kfr” to render correctly, but taking 16x longer than with it
disabled) (incorrect render reported by Kalles Fraktaler)

– updated program icon with transparent background and large version, and use it for child
windows too

– long double off-by-one bug fixed (incorrect render reported by CFJH)
– floatexp implementation bug fixes (0.0 was implemented incorrectly) (caused a series approxi-

mation underskipping failure that was reported by Kalles Fraktaler)
– fix distance colouring grid artifacts with small zoom size by disabling “reuse center” when

zoom size is not an integer (reported by gerrit)
– fix some iteration band edge artifacts (with external postprocessing of kfb map files) by

increasing the smooth bailout radius from 100 to 10000 (reported by gerrit)
– ensure added references fix their corresponding pixel (suggested by Pauldelbrot) (prevents loop

in auto solve glitches whereby a reference was repeatedly being added at the same location
without progress being made)

– disabled “guessing” (was causing occasional randomly bright single pixels at low zoom levels,
possibly a race condition?)

– build against an installed libjpeg instead of each time after clean
– fix broken complex formula reference calculations
– fix compilation warnings (now almost clean with -Wall -Wextra)
– compile as C++17 (should also still work as C++11 and C++14)
– delete bitrotten code paths for SetEvent()-based multithreading
– delete unused thread affinity setting code
– parameter data is saved as comment in image files (both PNG and JPEG)
– can load parameters from image file comments (both PNG and JPEG)
– delete obsolete VS build system
– fix “infinite waves” colouring (reported by gerrit)

• kf-2.12.3 (2017-09-25)

– multiple finite difference methods for distance colouring (suggested by gerrit)
– fix bug in examine zoom sequence auto solve glitches (first frame only) (reported by Dinkydau

and Fractal universe)
– raise limit for maximum number of references from 199 to 10000 (default still 69, you can

change it in iterations dialog)
– settable number of references per pass for examine zoom sequence auto solve glitches (default

still 10)

• kf-2.12.2 (2017-09-20)

– PNG image saving support using libpng and zlib;
– JPEG default quality to 100 (was 99);
– colouring uses floating point internally to reduce quantisation steps;

14

– dithering at end of colouring to improve perceptual quality;
– formula.cpp included in source zip so GHC is not needed unless changing formula code;
– optimized diffabs() code: one test Burning Ship location is 7.5% faster;
– preprocessor optimizes reference calculations by floating temporary variable (re)allocations out

of the inner loops: one test Burning Ship location is 30% faster;

• kf-2.12.1 (2017-09-19)

– simplified version numbering;
– built for 64bit (as before) and 32bit (new);
– documentation improvements;
– fix division by zero assertion failure in File -> Examine zoom sequence;
– fix crash in File -> Examine zoom sequence with only 1 image file;
– adjust distance colour modes for backwards compatibility;

• kf-2.11.1+gmp.20170913

– revert incompatible de log vs sqrt colouring change, instead add a new Distance (Logarithm)
colouring method #7;

– documentation improvements;
– limit maximum series approximation terms to 60 to try to fix overskipping with large images

• kf-2.11.1+gmp.20170822

– bugfix preprocessor for abs() formulas
– de colouring with log instead of sqrt

• kf-2.11.1+gmp.20170820

– bugfix preprocessor for diffabs() formulas

• kf-2.11.1+gmp.20170714

– disabled OpenCL (be more compatible)

• kf-2.11.1+gmp.20170713

– optimized Newton-Raphson zooming (3x faster in one test)

• kf-2.11.1+gmp.20170711

– workaround for WINE issue artificially limiting image size (now bitmaps up to 2GiB can be
created on all platforms)

• kf-2.11.1+gmp.20170710

– optimized formulas (reference calculation for quadratic Mandlebrot is much faster due to
lower-level calls to gmp)

– very experimental opencl support (mostly broken)
– bugfixes (fix hang loading deep zoom locations, fix newton size in new view radius calculation,

more complete library credits in documentation)
– prune dead code (incomplete jpeg library deleted from source, complete version downloaded

at build time as needed, delete rudimentary openmp support, delete non-performant barrier
variant, delete slower-than-gmp mpfr support, delete custom floating point support)

• kf-2.11.1+gmp.20170703

– formulas now generated at compile time from formula definition XML using XSL stylesheet
– used fixed format floats instead of scientific
– try to hide command prompt window on Windows

• kf-2.11.1+gmp.20170508

– restored threaded reference calculations (reimplemented with barrier() semantics to avoid
single-threaded WINE SetEvent() rendezvous)

• kf-2.11.1+gmp.20170504

– removed threaded reference calculations (too much overhead)

15

– miscellaneous code cleanups (no need for -fpermissive, const fixes, delete[] fixes, 64bit compati-
bility paranoia)

• kf-2.11.1+gmp.20170406

– fixed precision bugs (easy deep zoom, interactive failure)
– fixed performance bug with inflections
– fixed cross-hair resource bug
– added WINDRES argument to build system
– added more info to about dialog
– include source code with release

• kf-2.11.1+gmp.20170330.1

– fixes a crasher bug in the previous version

• kf-2.11.1+gmp.20170330

– unlimited precision
– separate compilation

• kf-2.11.1+gmp.20170313

– long double compiled into exe (no dll)

• kf-2.11.1+gmp.20170307

– kf-2.11.1 + gmp

• kf-2.9.3+gmp.20170307

– kf-2.9.3 + gmp

TODO
User Interface

• crosshair cursor with more contrast (suggested by CFJH)
• show box-region for nr-zoom before clicking (suggested by Foxxie)
• adjust the size of the box via slider or like shift_scroll wheel or something like that? (suggested by

Foxxie for nr-zoom, could also be useful for ctrl-left-click zoom)
• undo history for calculation data (suggested by TwinDragon)
• online help within program (suggested by TwinDragon)
• save image now function (without waiting for calculations)
• command line: print total runtime (suggested by gerrit)
• log window for diagnostics/debugging
• two-phase parameter loading with validation (suggested by Pauldelbrot)
• window and image size presets (suggested by saka and lycium)

Calculations

• increase ref count limit without restarting from scratch
• increase maxiters limit without restarting from scratch
• optimize series approximation and probe point stuff
• calculate series approximation in parallel with reference
• only store reference orbit after series approximation
• refine minibrot using interior distance estimates
• refine minibrot using boundary shrinking (calculate edges only)
• enhanced glitch detection methods for all formulas (knighty + gerrit)
• “find center of glitch” cycle between multiple selected methods

Newton-Raphson Zooming

• add zoom depth offset in addition to zoom depth factor to (eg) zoom closer to minibrot or embedded
Julia

16

• zoom to Misiurewicz points (custom zoom factor, manual preperiod selection) (suggested by gerrit)
• properly debug huge zoom values from size estimate
• make it work better in hard-skewed locations (need to skew the box period coordinates?)
• improve stopping criterion for resuming (don’t over-refine)

NanoMB

• automatic number type selection
• automatic number type promotion on overflow
• re-scaled number types
• SSA escape radius factor control (around 0.1 to 1.0)
• automatic period detection

Preprocessor

• flatten complex numbers to separate real and imaginary parts
• common subexpression elimination (share results, might be especially useful for large powers of

complex numbers)
• automatically parallelize reference iterations

Colouring

• assume sRGB display and gamma-correct downscaling (pixman currently supports 32bit sRGB+A,
but no 24bit sRGB without alpha)

• load/save palette to/from image
• rework entirely (now: 1024 colours with mandatory interpolation)
• implement Pauldelbrot’s multiwave colouring
• colour cycling (suggested by blob)
• more flexible colouring with lighting/layers/etc (suggested by Fraktalist)
• import gradients from various formats (.ugr/.gradient, .map, .xml (flam3)) inspired by Mandel

Meute + padleywood’s gradient convert tool: https://fractalforums.org/f/11/t/2934
• exterior tile texturing using smooth iteration count and phase
• bailout mode that combines the best of linear and log (for exterior tiling)
• color phase offset control
• orbit traps
• stripe average
• refactor transfer functions so iterdiv is scaled sensibly (suggested by FK68)

Getting The Code
I distribute EXEs bundled together with the corresponding source code.

The latest source code is available from my git repository:

git clone https://code.mathr.co.uk/kalles-fraktaler-2.git
cd kalles-fraktaler-2
git checkout master # for Karl's original upstream
git checkout claude # for MINGW build system and bug fixes
git checkout kf-2.13 # old stable (bugfixes only)
git checkout kf-2.14 # for current development
git tag -l # list available release tags

You also need et to generate the formula code for Newton-Raphson zooming:

git clone https://code.mathr.co.uk/et.git

This is outside the scope of this document at the moment, easiest is to download the release bundle
and copy the formula/generated folder from the included src zip. Get in touch for help if you want to
regenerate these sources yourself.

17

https://fractalforums.org/f/11/t/2934

Building On Linux
Compiling KF for your own CPU is recommended for optimal performance. The performance boost
can be significant, as the release EXEs are compiled for generic i686 and x86_64 but newer CPUs have
additional instructions available. This is less important now that OpenCL is available, as this optimizes
for your hardware at runtime.

Note: there is an upstream bug in the GCC compiler. On Debian the compiler is patched in recent
versions. Patching it yourself is not hard, but it does take a long time and need about 30GB of disk space.
Without a patched compiler, KF may crash in SIMD code due to 32-byte aligned moves with a 16-byte
aligned stack. See https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=939559. Contact me if you need
help to patch your compiler.

Build instructions for cross-compiling from GNU/Linux require about 10GB of disk space and good
internet download speed (or patience). About 750MB of downloads including the chroot debootstrap
step. If you have recent Debian you can skip the chroot step and install natively.

0. Setup Debian Buster chroot:

sudo mkdir ./vm
sudo debootstrap buster ./vm/
sudo mount proc ./vm/proc -t proc
sudo mount sysfs ./vm/sys -t sysfs
sudo cp /etc/hosts ./vm/etc/hosts
sudo chroot ./vm /bin/bash
cd

1. Install dependencies (inside the chroot if you made one):

dpkg --add-architecture i386
echo >> /etc/apt/apt.conf.d/30buster 'APT::Default-Release "buster";'
echo >> /etc/apt/sources.list 'deb http://deb.debian.org/debian bullseye main'
apt update
apt install \
build-essential \
cabal-install \
cmake \
ghc \
git \
libghc-parsec3-dev \
libtool \
lzip \
m4 \
p7zip \
pkg-config \
wget \
wine32 \
wine64 \
wine-binfmt \
xsltproc \
zip

apt install -t bullseye \
mingw-w64

apt install \
pandoc \
texlive-fonts-recommended \
texlive-latex-recommended # for PDF manual

mount binfmt_misc /proc/sys/fs/binfmt_misc -t binfmt_misc
update-binfmts --import /usr/share/binfmts/wine

For Ubuntu replace “wine32 wine64 wine-binfmt” with “wine” (but see note about build failures
with some versions).

18

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=939559

2. NEW in 2.15.1.3 configure the system MinGW compilers to use posix threading model (instead
of win32). If you don’t do this then you’ll get mysterious build failures in C++ threading code
(usually saying you need to #include <thread> even though it’s plainly included already).

Choose the manual posix alternative for all of these, you can ignore failures for gfortran and gnat if
they are not installed:

update-alternatives --set x86_64-w64-mingw32-g++ /usr/bin/x86_64-w64-mingw32-g++-posix
update-alternatives --set x86_64-w64-mingw32-gcc /usr/bin/x86_64-w64-mingw32-gcc-posix
update-alternatives --set x86_64-w64-mingw32-gfortran /usr/bin/x86_64-w64-mingw32-gfortran-posix
update-alternatives --set x86_64-w64-mingw32-gnat /usr/bin/x86_64-w64-mingw32-gnat-posix
update-alternatives --set i686-w64-mingw32-g++ /usr/bin/i686-w64-mingw32-g++-posix
update-alternatives --set i686-w64-mingw32-gcc /usr/bin/i686-w64-mingw32-gcc-posix
update-alternatives --set i686-w64-mingw32-gfortran /usr/bin/i686-w64-mingw32-gfortran-posix
update-alternatives --set i686-w64-mingw32-gnat /usr/bin/i686-w64-mingw32-gnat-posix

If you have existing builds from before 2.15.1.3, you should delete them or move them out of the
way, as mixing win32 with posix leads to a world of pain and misery.

3. Prepare non-root build user:

adduser build
enter and confirm password
su - build
mkdir -p ~/win64/src

4. Download Kalles Fraktaler 2 + sources:

cd ~/win64/src
git clone https://code.mathr.co.uk/kalles-fraktaler-2.git
cd kalles-fraktaler-2
git checkout kf-2.14

5. Download and build and install 3rd party library sources (inspect the script if you want to be sure
it isn’t doing anything dodgy, or to copy/paste parts if necessary), the script can build both 64bit
and 32bit variants if necessary:

cd ~/win64/src/kalles-fraktaler-2
bash ./prepare.sh dl
bash ./prepare.sh 64
bash ./prepare.sh 32

6. Download the latest version of Kalles Fraktaler 2 + and copy the et-generated formulas from it:

cd ~/win64/src/kalles-fraktaler-2
wget -c "https://mathr.co.uk/kf/kf-$(wget -q -O- https://mathr.co.uk/kf/VERSION.txt).7z"
7zr x kf-*.7z
cd kf-*/
unzip kf-*src.zip
cd kf-*-src/
cp -avit ../../formula/generated formula/generated/*.c

7. To build Kalles Fraktaler 2 + optimized for your own 64bit CPU:

cd ~/win64/src/kalles-fraktaler-2
make clean
make SYSTEM=native -j $(nproc)
./kf.exe

8. To build Kalles Fraktaler 2 + for generic 32bit CPU:

cd ~/win64/src/kalles-fraktaler-2
make clean
make SYSTEM=32 -j $(nproc)
./kf.exe

19

9. To build Kalles Fraktaler 2 + for generic 64bit CPU:

cd ~/win64/src/kalles-fraktaler-2
make clean
make SYSTEM=64 -j $(nproc)
./kf.exe

10. To build Kalles Fraktaler 2 + release (generic 64bit + generic 32bit + documentation + source zip
+ everything 7z + signing):

cd ~/win64/src/kalles-fraktaler-2
./release.sh $(git describe)

Note: build fails on Ubuntu 16.04.3 LTS (xenial):

$ make
x86_64-w64-mingw32-g++ -mfpmath=sse -xc++ -Wno-write-strings -pipe -MMD -g -O3 -ffast-math -I/home/claude/win64/include -DKF_THREADED_REFERENCE_BARRIER -o fraktal_sft/CDecNumber.o -c fraktal_sft/CDecNumber.cpp
In file included from fraktal_sft/CDecNumber.cpp:1:0:
fraktal_sft/CDecNumber.h:5:76: error: 'decNumber' was not declared in this scope
typedef boost::multiprecision::number<boost::multiprecision::gmp_float<0>> decNumber;

^
fraktal_sft/CDecNumber.h:5:76: error: template argument 1 is invalid
fraktal_sft/CDecNumber.h:5:62: error: template argument 1 is invalid
typedef boost::multiprecision::number<boost::multiprecision::gmp_float<0>> decNumber;

^
fraktal_sft/CDecNumber.h:5:62: error: template argument 2 is invalid
fraktal_sft/CDecNumber.h:5:32: warning: 'typedef' was ignored in this declaration
typedef boost::multiprecision::number<boost::multiprecision::gmp_float<0>> decNumber;

^
...
$ x86_64-w64-mingw32-g++ --version
x86_64-w64-mingw32-g++ (GCC) 5.3.1 20160211
Copyright (C) 2015 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

The working Debian Buster with compiler from Bullseye (needed for the SIMD alignment fix mentioned
above) has:

$ x86_64-w64-mingw32-g++ --version
x86_64-w64-mingw32-g++ (GCC) 10-posix 20200525
Copyright (C) 2020 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Building on Windows 64-bit (may be adaptable to 32-bit)
Note these instructions are out of date since the switch to MinGW posix threading model.

Build instructions for compiling on Windows (thanks to knighty and Patrick Owen!):

0. Remove any old version of MSYS2.

These instructions assume you are using a fresh version of MSYS2. Depending on how confident
you are, you may be fine skipping this step.

1. Download the latest version of MSYS2 from https://www.msys2.org/ (msys2-x86_64-20190524.exe).

2. Run it to install MSYS2. When the installation finishes, the MSYS2 shell should open.

Note: Many files you interact with in future steps are in the installation directory of MSYS2. It is
recommended that you install MSYS2 on a drive with plenty of space, as there will be about 10
gigabytes of files in there at the end of the installation process.

3. In the MSYS2 shell, invoke pacman:

20

pacman -Syuu

You will need to keep running this command until is says “there is nothing to do”. While it’s
running, it may ask you to close the terminal. Follow these instructions. When you open the
terminal again (see step 5), keep running the command.

4. Close the MSYS2 shell:

exit

5. Reopen the MSYS2 shell (from startup menu, under the name MSYS2 MSYS).

6. Install mingw/gcc 64 bit (this will take a fair bit of time):

pacman -S mingw-w64-x86_64-toolchain

When it asks you to enter a selection, just hit enter (all).

7. Install required tools (this will likely take less time):

pacman -S --needed git patch make diffutils mingw-w64-x86_64-cmake lzip p7zip unzip

8. Close the MSYS2 shell then open “MSYS2 MinGW 64-bit” shell (instead of MSYS2 MSYS, in order
to have all the environment variables properly set)

9. Install tar. The version of tar that comes installed with MSYS2 has trouble extracting xz files.

pacman -S tar

10. Restart MSYS2 again (Close and reopen “MSYS2 MinGW 64-bit”).

11. Install ghc (Haskell)

See https://gitlab.haskell.org/ghc/ghc/wikis/building/preparation/windows
curl -L https://downloads.haskell.org/~ghc/8.6.5/ghc-8.6.5-x86_64-unknown-mingw32.tar.xz | tar -xJ -C /mingw64 --strip-components=1

12. Change directory to the kalles fraktaler sources (where Makefile resides).

If this directory is outside of the msys64 directory, include the full Windows path, replacing
backslashes with forward slashes and drive letters like C:\ to paths like /c/.

13. Download and build and install 3rd party library sources (inspect the script if you want to be sure it
isn’t doing anything dodgy, or to copy/paste parts if necessary), the script will need to be modified
to build the 32bit version:

bash ./prepare-msys.sh dl
bash ./prepare-msys.sh 64

The first script is relatively fast depending on your internet speed, as it downloads dependencies.
Depending on the speed of your machines, the second script takes about an hour to run.

The script has several places where it pauses for a while with no output. You will know that it has
finished successfully when it shows a bunch of lines starting with “– Installing:” and then exits,
giving you back control of the command line.

14. Download the latest version of Kalles Fraktaler 2 + and copy the et-generated formulas from it:

cd "/path/to/Kalles Fraktaler 2 +"
wget -c "https://mathr.co.uk/kf/kf-$(wget -q -O- https://mathr.co.uk/kf/VERSION.txt).7z"
7zr x kf-*.7z
cd kf-*/
unzip kf-*src.zip
cd kf-*-src/
cp -avit ../../formula/generated formula/generated/*.c

Feel free to delete kf-*/ and kf-*.7z inside your git repository afterwards.

15. To build Kalles Fraktaler 2 + optimized for your own CPU:

21

cd "/path/to/Kalles Fraktaler 2 +"
make clean
WINDRES=windres make SYSTEM=native -j $(nproc)

Note that mingw32-make does not properly detect that files are already up-to-date, making building
slow each time. Use make instead.

16. To build Kalles Fraktaler 2 + release:

Follow the instructions for Linux, possibly making adaptions to allow them to work with MSYS2

17. Execute it this way from (MSYS2 MinGW 64-bit) command line:

./kf.exe

because it is linked dynamically to some libraries. In order to execute it from the explorer one
needs to copy libwinpthread-1.dll from msys64/mingw64/bin next to the generated executable.

Legal
Kalles Fraktaler 2 +

Copyright (C) 2013-2017 Karl Runmo

Copyright (C) 2017-2020 Claude Heiland-Allen

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero
General Public License as published by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License along with this program. If
not, see https://www.gnu.org/licenses/.

• this software is based in part on the work of the Independent JPEG Group https://jpegclub.org/r
eference/libjpeg-license/

• the TIFF library is used under the libtiff license: https://gitlab.com/libtiff/libtiff/blob/master/CO
PYRIGHT

• the PNG library is used under the libpng license https://libpng.org/pub/png/src/libpng-
LICENSE.txt

• the ZLIB library is used under the zlib license https://zlib.net/zlib_license.html
• the GMP library is used under the conditions of the GNU Lesser General Public License version

3 and the GNU General Public License version 2 https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/gpl-2.0.html

• the MPFR library is used under the conditions of the GNU Lesser General Public License version 3
https://www.gnu.org/licenses/lgpl-3.0.en.html

• the GSL library is used under the conditions of the GNU General Public License https://www.gnu.
org/licenses/gpl.html

• the PIXMAN library is used under the conditions of the MIT License https://cgit.freedesktop.org
/pixman/tree/COPYING

• the ILMBASE library is used under the conditions of the Modified BSD License https://www.open
exr.com/license.html

• the OPENEXR library is used under the conditions of the Modified BSD License https://www.op
enexr.com/license.html

• the GLM library is used under the conditions of the MIT License https://glm.g-truc.net/copying.txt
• the BOOST library is used under the Boost Software License Version 1.0 https://www.boost.org/

LICENSE_1_0.txt
• the CLEW library is used under the Boost Software License Version 1.0 https://www.boost.org/LI

CENSE_1_0.txt

KF versions between 2.14.7 (inclusive) and 2.15.1.3 (exclusive) used:

22

https://www.gnu.org/licenses/
https://jpegclub.org/reference/libjpeg-license/
https://jpegclub.org/reference/libjpeg-license/
https://gitlab.com/libtiff/libtiff/blob/master/COPYRIGHT
https://gitlab.com/libtiff/libtiff/blob/master/COPYRIGHT
https://libpng.org/pub/png/src/libpng-LICENSE.txt
https://libpng.org/pub/png/src/libpng-LICENSE.txt
https://zlib.net/zlib_license.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://www.gnu.org/licenses/gpl.html
https://www.gnu.org/licenses/gpl.html
https://cgit.freedesktop.org/pixman/tree/COPYING
https://cgit.freedesktop.org/pixman/tree/COPYING
https://www.openexr.com/license.html
https://www.openexr.com/license.html
https://www.openexr.com/license.html
https://www.openexr.com/license.html
https://glm.g-truc.net/copying.txt
https://www.boost.org/LICENSE_1_0.txt
https://www.boost.org/LICENSE_1_0.txt
https://www.boost.org/LICENSE_1_0.txt
https://www.boost.org/LICENSE_1_0.txt

• the MINGW-STD-THREADS library is used under the conditions of the Simplified BSD License
https://github.com/meganz/mingw-std-threads/blob/master/LICENSE

NOTE: If you redistribute the binaries or provide access to the binaries as a service, you must also be
prepared to distribute the source corresponding to those binaries. To make this easier for you, the more
recent zips include the source too (though you’ll also need to get the third party library sources).

Acknowledgements
Thanks to:

• K.I.Martin for applying Perturbation and Series Approximation on the Mandelbrot set and generously
sharing the theory and Java source code!

• Pauldelbrot for finding the reliable glitch detection method
• Botond Kósa and knighty for the extensions of Series Approximation
• laser blaster for the Burning ship formula
• stardust4ever for other fractal types
• claude for the Newton-Raphson method
• gerrit for the distance colouring differencing variations
• Dinkydau, Fractal universe, CFJH, Foxxie and others for reporting bugs
• Chillheimer for hosting my program

Claude also thanks Karl for releasing the source code and assigning a Free Software license.

User Manual
File

• Open

Opens the current location from a parameter file (*.kfr) You can also load metadata from images
saved by KF. You can also drag-and-drop files from the file manager on to the main window to
open them as parameters.

• Save

Saves the current location in the current parameter file (*.kfr)

• Save as

– KFR Saves the current location in a new parameter file (*.kfr)

– PNG Saves the current location in a PNG image file (*.png). The location and settings are
saved in the file metadata.

– JPEG Saves the current location in a JPEG image file (*.jpg). The location and settings
are saved in the file metadata.

– TIFF Saves the current location in a TIFF image file (*.tif). The location and settings are
saved in the file metadata.

– EXR Saves the current location in a EXR image file (*.exr). The iteration data is also saved
in the file by default. The location and settings are saved in the file metadata.

– Set EXR save channels Choose which channels to save in EXR image files. This is stored
in the settings, so you can use it with command line rendering.

– KFB Saves the iteration data in a map file (*.kfb). This file can be used by the KeyFramMovie
program. The location and settings are not saved.

Saved image dimensions can be smaller than the calculated image size set in the settings. The
image will be downscaled according to the shrink quality setting. If the saved image dimensions are
larger, the image will be recalculated at the new size.

Note that for EXR, the saved image dimensions are only for the “preview image”, the full calculated
image size is used for the main image and the iteration data.

23

https://github.com/meganz/mingw-std-threads/blob/master/LICENSE

• Open map

Load the iteration data from map file (*.kfb, *.exr).

Note: you must set the aspect ratio of the window to match the KFB data before opening the map
file. If you have also saved images, you can do that by loading the image as a settings file.

Note: if you want to continue zooming from the location, you must load the KFR file before opening
the map file. You can also load a saved image as a location file. Location information is not stored
in KFB files.

Note: there is a historical accident whereby the iteration divider is saved in the KFB as an integer,
losing any fractional part and sometimes resetting to 1 on load. A workaround is to load the palette
from a KFP file (which is just a .kfr renamed to .kfp) after opening the map file.

• Store zoom-out images

Zoom out automatically with the selected Zoom size and store JPEG/PNG/TIFF images and map
file (*.kfb, *.exr) for each zoom out. The zoom out stops when the depth is lower than 1. The
resulting files can be used by the KeyFrameMovie program to create a zoom-in animation.

• Examine Zoom sequence

Make sure you store the end location as a kfr file in the same directory as you store the zoom
sequence frames. This function allows you to examine the frames one by one and add references to
remove eventual visible glitch blobs, or choose another pixel as the main reference.

• Resume Zoom sequence

Make sure you store the end location as a kfr file in the same directory as you store the zoom
sequence frames. This function allows you to resume and continue the zoom out sequnce, if it got
interrupted. You must set the zoom size factor to the correct value for the sequence before invoking
this command.

• Open Settings

Opens rendering settings from a settings file (*.kfs) You can also load metadata from images saved
by KF.

• Save Settings

Saves the current rendering settings to a settings file (*.kfs)

• Check for update

Retrieves information from KF’s homepage on the internet, to let you know if a newer version is
available.

• Exit

Exit this program

Fraktal
• Presets

Set groups of settings to suggested preset values.

– Fast accuracy may be compromised but it’s fast for browsing. Sets ignore isolated glitch
neighbourhood to 4, enables guessing, disables low tolerance for glitches and approximation,
and disables derivatives computation unless analytic DE colouring is currently in use.

– Best highest quality settings for important images, but slow. Sets ignore isolated glitch
neighbourhood to 0 (disabled), disables guessing, enables low tolerance for glitches and
approximation, and enables jitter with a default seed of 1.

• Formula. . .

Adjust fractal type and power etc. See below.

24

• Bailout. . .

Adjust iteration limit and escape radius, etc. See below

• Location. . .

Displays the Location dialog where the coordinates for this location is displayed and can be edited.

• Colors. . .

Adjust colouring. See below.

• Information. . .

Display information about the fractal. See below.

• Refresh

Render the current location

• Cancel rendering

Cancel the current rendering

• Reset

Set the location to the start point

• Undo

Go back to previous location(s).

• Redo

Go forward in the undo history.

• Copy

Save the current location to the system clipboard.

• Paste

Set the current location from the system clipboard.

View
• Zoom size

Set the level of zoom, left mouse click to zoom in, right to zoom out

• Animate soom

Turns animation on or off when zooming

• Set window size

Set the size of the display window.

• Set image size

Set the size of the internal image size. If this is larger than the window size, an anti-alias effect is
achieved

• Arbitrary size

When disabled, the window aspect ratio is locked to 16:9. When enabled, any aspect ratio is
possible.

• Rotate

Activate rotation, drag to rotate the image

• Reset rotation

Clear any rotation

25

• Skew

Opens the Skew dialog which allows to “un-skew” locations that are skewed.

Automatic unskew is available via the Newton-Raphson zooming dialog.

• Set Ratio

Enables changing the ratio between height and width of the background image in order to enable
stretching locations. Combinated with rotation, an almost infinite skewing ability is enabled, useful
when exploring the hidden treasures of the new Fractals! (This is another name for skew.)

• Reset Ratio

Reset skew ratio to default

• Skew animation

Activates or deactivas skew animation. If activated, a popup allows you to specify end skew
parameters and number of frames. The fractal will be rendered frame by frame, and can be
combined with frame by frame rendering in KeyFrameMovieMaker or MMY3D

• Shrink quality

Set quality of image scaling. “Fast” and “Default” are better suited for exploring, but “Best” looks
much better at the cost of slower colouring (it does properly filtered anti-aliasing).

You shouldn’t need to adjust this unless you set the image size larger than the window size, or
intend saving image files at smaller resolutions than the image size.

Note: this feature is still a bit experimental and subject to change in future versions.

Navigation
• Newton-Raphson zooming

When activated, a dialog will be displayed, which allows you to select if the zoom should jump
directly to the minibrot, or to 3/4 zooms to the minibrot, where the current pattern is doubled, etc.

The zoom level of the current pattern is set when opening the dialog, and can be changed with the
capture button (which gets the current zoom level from the image view).

Click on the fractal to specify the start point of the search of the minibrot. The current zoom size
is used to set the boundaries of search around the selected point. It is recommended to set the
zoom size to 128 and use the crosshair window for pixel-accurate selection.

Notice that it can take a long time to calculate the position of deep minibrots. However, that should
be still much faster than zooming to the minibrot manually by selecting the center of the pattern in
the view, or with the automatic search of minibrot that is also using the pattern center.

When “auto skew (newton)” is enabled before activating, the view will be skewed to make features
near the minibrot approximately circular.

When “auto skew (escape)” is activated, the view will be skewed to make features in the current
view approximately circular (without zooming).

“Auto skew escape” has an option to take into account d/dz derivatives as well as d/dc, some fractals
work better with it enabled, some without. Experiment and report back!

• Find Minibrot

Starts an automatic zoom-in in the image’s pattern center, until a Minibrot is found or if it fails to
find the center.

It’s probably better to use Newton-Raphson zooming if possible.

• Non exact find Minibrot

Makes the Find Minibrot function fail every 20 zoom-in, in order to gain depth automatically
without ending up in a Minibrot

26

Newton-Raphson zooming may be a more useful option.

• Center cursor

Center the cursor to image’s pattern center

• Find center of glitch (Color)

Centers the mouse pointer over the glitch blob found, if any

• Find highest iteration

Centers the mouse pointer over the pixel with the highest iteration

• Show Inflection

Activate or deactivate display of Inflection

• Show crosshair window

Display a small window that magnifies the area around the mouse cursor. Perfect for precisely
picking particular pixels for zooming etc.

Advanced
• Auto solve glitches

Turns the Auto solve glitches function on or off

• Reference selection method.

Chooose alternative methods for finding center of glitches. May be faster/slower depending on
location.

• Solve glitch with near pixel method

Instead of re-render all pixels with the same iteration count value(color) only the connected pixels
are re-rendered. On some locations other areas in the same view have the exact same iteration
count values. These pixels may be correctly rendered and may be incorrect if re-rendered with
another reference

• Ignore isolated small glitches

When enabled, ignores single-pixel glitches by interpolating their value from neighbouring pixels. If
the image size is very large, there may be a very large number of these tiny glitches, whose incorrect
rendering may be invisible to the eye, and whose correct rendering may take forever.

• Glitch low tolerance

When checked, glitches are more likely to be detected. Disabling it can lead to bad images, but is
faster.

• Series approximation low tolerance

When checked, series approximation is stricter. Disabling it can lead to bad images, but is faster.

• Approximation terms

Automatic (default, recommended) is based on number of pixels.

• Max references

Sets limit of secondary reference points for automatic glitch correction. There is a hard limit of
10000, which is also the default.

• Set main reference

Let you click the image and select the main reference for the whole image. This can be useful when
glitches appears on top of minibrots when the reference is outside this minibrot. The glitch pattern
disappears from the minibrot if the main reference is selected inside the minibrot.

27

• Add reference (Color)

Add a reference and re-calculates the pixels with the same iteration count as the reference. This is
useful if the Auto solve glitches function fails to find and solve glitches in the image

• Reuse reference

Do not re-calculate the reference for further zooming. This can be useful when during automatic
zoom-out and to test different reference points, but must not be used together with the Auto solve
glitches function active.

Note: reuse reference cannot be used for zoom sequences in which the number type used for
calculations changes (which happens near 1e9864 1e4932 1e616 1e308 for power 2 formulas). To
avoid corrupt zoom out images when reuse reference is enabled, also enable “Use floatexp always”
(deeper than 1e4932) or “Use long double always” (deeper than 1e308). This may slow down
calculations. Alternatively, render the zoom out sequence in several segments, one for each number
type (floatexp, scaled long double, long double, scaled double, double).

• No reuse center

Don’t paste the previous image in the middle when zooming out. Disabling this (ie, do reuse center)
can be faster but can also lead to bad images.

• Show iterations

Displays the image black-and-white with the pixels with the highest iteration as white and the
pixels with the lowest iteration as black

• Show smooth transition colors

Displays the image black-and-white representing the smoothing coefficient

• Show glitches

When activated, glitches are displayed with a solid color

• Mirror

mirrors the image around the x-axis. Can be used on the deeper half of a zoom sequence to a
minibrot - but not too close to the minibrot and too close to the half. . .

• No series approximation

Turns the Series approximation function on or off.

• Use long double always

Use always the 80-bit long double hardware data type. This can solve some type of glitches

• Use floatexp always

Use always the double mantissa/integer exponent data type. This probably only make the render
slower

• Use NanoMB1 (experimental)

For power 2 Mandelbrot only.

Use knighty’s experimental NanoMB1 algorithm for bivariate super- series-approximation. Calcula-
tions are done with floatexp always. A regular series approximation plus perturbation pass follows
for glitch correction.

It is required to set the period in the Location dialog before enabling NanoMB1. Using Newton
zoom sets the period automatically.

It is recommended to enable Reuse Reference after recalculating with NanoMB1. A new reference
is calculated automatically after each Newton zooming, whatever the setting of Reuse Reference.

Whether NanoMB1 is faster or not depends heavily on the location: views close to minis should be
significantly faster than the regular ‘fast’ preset.

28

• Use NanoMB2 (experimental)

For power 2 Mandelbrot only.

Use knighty’s experimental NanoMB2 algorithm for bivariate super- series-approximation. Cal-
culations are done with floatexp always, glitch detection and correction is disabled (and may be
unnecessary?).

It is recommended to set the period limit in the Location dialog before enabling NanoMB2, otherwise
it uses the maximum iteration count which may take significantly longer. Using Newton zoom sets
the period limit automatically.

It is recommended to enable Reuse Reference after recalculating with NanoMB2. A new reference
is calculated automatically after each Newton zooming, whatever the setting of Reuse Reference.

Whether NanoMB2 is faster or not depends heavily on the location: views close to minis should be
significantly faster than the regular ‘fast’ preset.

The RadiusScale field in the .kfs settings file controls the scaling of the escape radius calculated for
each minibrot in the chain. Increasing it may be faster but lead to visible distortion, decreasing it
may help the distortion but slow things down. No GUI for this control yet.

• Interior checking (NanoMB only)

For power 2 Mandelbrot rendered with NanoMB1 or NanoMB2 only.

Use an interior checking algorithm, which may or may not speed up per-pixel calculations in
locations with large interior regions visible.

Experimental. Correctness is to be evaluated. Subject to change.

• Use auto iterations

Turns automatic iteration control on or off. This is on per default.

• Use guessing

Enable interpolation of neighbouring pixel data when the iteration count is the same. This speeds
up rendering of interior regions, but some colouring can lead to visible artifacts in the exterior.

• ‘Save’ overwrites existing file

When this is checked, Save (Ctrl-S) overwrites the current file without asking. When this is
unchecked, Save will add a timestamp to file names to prevent accidental data loss.

• SIMD vector size

Number of pixels to calculate simultaneously per core. Setting it too small or too large will lead to
slower performance. The sweet spot will depend on your particular CPU model, cache sizes, how
KF is compiled (e.g. 64 vs native), etc.

Setting it to 1 disables the explicitly vectorized code path; some SIMD instructions may still be
used depending on the compiler.

• SIMD chunk size

Number of iterations to calculate between escape/glitch checkes. Setting it too small or too large
will lead to slower performance, because checks will be done too often (small chunk size) or too
many extra iterations will be done per pixel (large chunk size). The sweet spot will depend on your
CPU and the location (if the number of iterations is high, probably a higher chunk size would be
beneficial).

How it works: the last chunk (when any of the SIMD vector escape to infinity or glitch detected) is
repeated for each pixel in the vector individually, after rolling back to before the last chunk. This
means some iterations are repeated, but the speedup from doing escape checks less frequently may
overcome this issue.

• Half-float image buffer

29

Pre-allocate 16bit image buffer for EXR export. Otherwise it is only allocated when needed. May
speed up EXR export if this is checked. If not using EXR, leave this unchecked.

• Multi-threaded EXR input/output

Use multiple threads in EXR input/output. Speed and CPU efficiency (as well as memory usage)
may differ when toggling this flag; evaluate the optimal choice for your image size and system.

• Multi-threaded reference calcs

Use multiple threads when calculating reference orbits (available for long double and floatexp only).
Speed and CPU efficiency may differ when toggling this flag; evaluate the optimal choice for your
location and system.

• Threads per CPU

The default of 1 is sensible if KF is the only thing you’re running. Increase the count if you want
KF to peg your system, decrease it if you want to do other things at the same time.

The last menu item reduces the calculated number of threads by 1, which can help improve system
responsiveness in some configurations.

There will always be at least one thread.

These options only affect perturbation rendering and image colouring, not Newton-Raphson zooming
or reference calculations.

Note: changing this during rendering could lead to crashes, so the menu is disabled during rendering
to prevent that.

About
At the very top right:

• ?

Open about dialog, with version information and credits.

This also functions as a lock mechanism, preventing accidental zooming while a long render is taking
place.

Formula dialog
• Fractal type: Mandelbrot, Burning Ship, etc

• Power

• Seed: where to start iterating from (default 0 + 0 i, for best semantics it should be a critical point
of the iteration formula, where it’s d/dz derivative is zero).

• Factor A: set the complex number a (denoted f = d + e i in the formula list below) for TheRed-
shiftRider formulas.

• Derivatives: compute derivatives (required for Analytic distance estimation, and Analytic is
recommended for slopes when jitter is enabled). Also enables a more accurate glitch detection
criterion (for power 2 Mandelbrot only).

• Jitter seed: non-zero enables jitter with a pseudo-random-number generator seed value.

• Jitter scale in units of a pixel (1 pixel is sensible in most cases).

• Gaussian jitter is probably best left disabled (uniform jitter looks better).

Bailout dialog
• Number of iterations. Increase this if the interior is “blobby”.

• Smooth method (new in 2.14.10, was previously linked to escape radius)

– Log: use the renormalized smooth iteration count for Mandelbrot

30

– Linear: interpolate between last two iterations (better for small escape radius and Flat
colouring)

• Escape radius

– High: large escape radius gives a smoother appearance.

– Bailout=2: classic escape radius for power 2 Mandelbrot.

– Low bailout: smallest valid escape radius for higher power Mandelbrot.

– Custom: choose your own escape radius value (new in 2.14.10)

• Bailout Re+Im: modify these for special effects (default 1, 1)

• Norm power (new in 2.14.10)

– 1: use abs norm (taxicab, Manhatten)

– 2: regular Euclidean norm

– Infinity: use maximum norm (special case)

– Custom: choose your own power

The value compared to the escape radius when testing for escape is pow(abs(b_x * pow(abs(z_x),
p) + b_y * pow(abs(z_y), p)), 1/p).

Colors dialog
• Number of key colors

Set the number of key colors between 1 and 1024.

• Divide iteration

Divide each iteration number with this value, for dense images this value can be greater than 1.
For DE, values less than 1 can be useful.

• Color offset

Offset the colors in the palette

• Random

Fill the palette with random colors made from the Seed value. The Seed button select a seed value
randomly.

• More contrast

Move RGB values closer to max or min

• Less contrast

Move RGB values closer to the middle

• Show slopes

Enable slope encoding for 3D effect.

First value is the magnification of the slopes. The start value of 100 is suitable for the unzoomed
view. Deep views requires a couple of magnitudes higher value.

The second value is the percentage with which the slope encoding is applied on the coloring. 100 is
max, however flat areas will still have the palette color visible.

• Save palette

Save the current palette in KFP (*.kfp) file

• Open palette

Load palette from a KFP (*.kfp) file

31

• Expand double

Double the number of key colors without changing the palette. This allows finer control of individual
colors without changing the palette for other colors

• Expand all

Increase the number of key color to maximum 1024 without changing the palette

• Double

Double the key colors by repeating them

• Merge Colors

Allows a selected color to be merged to every specied key color

• Show index

Capture the mouse, hover the mouse over the fractal image and the corresponding color in the list
will be highlighted. Click and the color selection dialog will be displayed for the active color

• Smooth color transition

Makes the transitions of colors smooth

• Inverse smooth color transition

Inverse the smooth color transition which makes edges more visible

• Unnamed dropdown box

Specifies handling of the iteration count values prior to coloring

• Palette waves

The palette can be filled from sine waves applied on Red, Green, Blue and Black-and-white. Each
input box specifies the number of periods applied on the number of key colors in the palette. If the
input box is left empty, no wave of this color is applied. At right of each input box the “P”-button
makes the number you entered prime, since different prime numbers probably give more variation.
The last input box specifies the waves offset.

The button “Generate” applies the waves on the palette, the “Seed” button fills the fields with
random values

• Infinite waves

Waves can be applied on Hue, Saturation and Brightness rather than RGB values. The Period value
specifies the length of the period (not the number of periods as for the Palette waves). Periods with
prime numbers should be able to produce an infinite number unique colors

A negative value on Hue, Saturation or Brightness makes a flat percentage value to be applied on
all iterations.

• Texture

A background image can be loaded, which is distorted by a slope effect. Only BMP, JPEG, GIF
files can be loaded so far.

Privacy note: the full file system path to the texture file is saved in the parameter files (including
saved image metadata).

Information dialog
• Minimum iteration count achieved in the image (display only).

• Maximum iteration count achieved in the image (display only).

• Series approximation iteration count (display only).

• Series approximation terms in use (display only).

32

• Calculations per second (display only).

Formulas
Notation:

i -- imaginary unit (square root of -1)
p -- integer power between 2 and 5 (10 for Mandelbrot)
c = a + i b -- pixel coordinates (parameter plane)
z = x + i y -- iteration variable
w = u + i v -- temporary variable for two-stage formulas
f = d + i e -- constant 'a' for TheRedshiftRider formulas
l m ... -- juxtaposition is multiplication
^ -- raise an expression to a positive integer power
|.| -- surrounding a real-valued expression: absolute value

Formulas:

• Mandelbrot

z := z^p + c

• Burning Ship

z := (|x| + i |y|)^p + c

• Buffalo

w := z^p
z := (|u| + i |v|) + c

• Celtic

w := z^p
z := (|u| + i v) + c

• Mandelbar

z := (x - i y)^p + c

• Mandelbar Celtic

w := (x - i y)^2
z := (|u| + i v) + c

• Perpendicular Mandelbrot

z := (|x| - i y)^2 + c

• Perpendicular Burning Ship

z := (x - i |y|)^2 + c

• Perpendicular Celtic

w := (|x| - i y)^2
z := (|u| + i v) + c

• Perpendicular Buffalo

w := (x - i |y|)^2
z := (|u| + i v) + c

• Cubic Quasi Burning Ship

z := (|x| (x^2 - 3 y^2) - i |y (3 x^2 - y^2)|) + c

• Cubic Partial BS Real

z := (|x| (x^2 - 3 y^2) + i y (3 x^2 - y^2)) + c

• Cubic Partial BS Imag

33

z := (x (x^2 - 3 y^2) + i |y| (3 x^2 - y^2)) + c

• Cubic Flying Squirrel (Buffalo Imag)

z := (x (x^2 - 3 y^2) + i |y (3 x^2 - y^2)|) + c

• Cubic Quasi Perpendicular

z := (|x| (x^2 - 3 y^2) - i y |3 x^2 - y^2|) + c

• 4th Burning Ship Partial Imag

z := (x + i |y|)^4 + c

• 4th Burning Ship Partial Real

z := (|x| + i y)^4 + c

• 4th Burning Ship Partial Real Mbar

z := (|x| - i y)^4 + c

• 4th Celtic Burning Ship Partial Imag

w := (x + i |y|)^4
z := (|u| + i v) + c

• 4th Celtic Burning Ship Partial Real

w := (|x| + i y)^4
z := (|u| + i v) + c

• 4th Celtic Burning Ship Partial Real Mbar

w := (|x| - i |y|)^4
z := (|u| + i v) + c

• 4th Buffalo Partial Imag

w := z^4
z := (u + i |v|) + c

• 4th Celtic Mbar

w := (x - i y)^4
z := (|u| + i v) + c

• 4th False Quasi Perpendicular

z := ((x^4 + y^4 - 6 x^2 y^2) - i 4 x y |x^2 - y^2|) + c

• 4th False Quasi Heart

z := ((x^4 + y^4 - 6 x^2 y^2) + i 4 x y |x^2 - y^2|) + c

• 4th Celtic False Quasi Perpendicular

z := (|x^4 + y^4 - 6 x^2 y^2| - i 4 x y |x^2 - y^2|) + c

• 4th Celtic False Quasi Heart

z := (|x^4 + y^4 - 6 x^2 y^2| + i 4 x y |x^2 - y^2|) + c

• 5th Burning Ship Partial

z := (|x| + i y)^5 + c

• 5th Burning Ship Partial Mbar

z := (|x| - i y)^5 + c

• 5th Celtic Mbar

w := (x - i y)^5
z := (|u| + i v) + c

34

• 5th Quasi Burning Ship (BS/Buffalo Hybrid)

w := (|x| + i y)^5
z := (u - i |v|) + c

• 5th Quasi Perpendicular

z := (|x| (x^4 + 5 y^4 - 10 x^2 y^2) - i y (|5 x^4 + y^4 - 10 x^2 y^2|)) + c

• 5th Quasi Heart

z := (|x| (x^4 + 5 y^4 - 10 x^2 y^2) + i y (|5 x^4 + y^4 - 10 x^2 y^2|)) + c

• SimonBrot 4th

z := z^2 (|x| + i |y|)^2 + c

• 4th Imag Quasi Perpendicular / Heart

z := ((x^4 + y^4 - 6 x^2 y^2) + i 4 x |y (x^2 - y^2)|) + c

• 4th Real Quasi Perpendicular

z := ((x^4 + y^4 - 6 x^2 y^2) - i 4 y |x (x^2 - y^2)|) + c

• 4th Real Quasi Heart

z := ((x^4 + y^4 - 6 x^2 y^2) + i 4 y |x (x^2 - y^2)|) + c

• 4th Celtic Imag Quasi Perpendicular / Heart

z := (|x^4 + y^4 - 6 x^2 y^2| + i 4 x |y (x^2 - y^2)|) + c

• 4th Celtic Real Quasi Perpendicular

z := (|x^4 + y^4 - 6 x^2 y^2| - i 4 y |x (x^2 - y^2)|) + c

• 4th Celtic Real Quasi Heart

z := (|x^4 + y^4 - 6 x^2 y^2| + i 4 y |x (x^2 - y^2)|) + c

• SimonBrot 6th

z := z^3 (|x| + i |y|)^3 + c

• HPDZ Buffalo

z := (((x^2 - y^2) - |x|) + i (|2xy| - |y|)) + c

• TheRedshiftRider 1: a*zˆ2+zˆ3+c

z := (f z^2 + z^3) + c

• TheRedshiftRider 2: a*zˆ2-zˆ3+c

z := (f z^2 - z^3) + c

• TheRedshiftRider 3: 2*zˆ2-zˆ3+c

z := (2 z^2 - z^3) + c

• TheRedshiftRider 4: a*zˆ2+zˆ4+c

z := (f z^2 + z^4) + c

• TheRedshiftRider 5: a*zˆ2-zˆ4+c

z := (f z^2 - z^4) + c

• TheRedshiftRider 6: a*zˆ2+zˆ5+c

z := (f z^2 + z^5) + c

• TheRedshiftRider 7: a*zˆ2-zˆ5+c

z := (f z^2 - z^5) + c

35

• TheRedshiftRider 8: a*zˆ2+zˆ6+c

z := (f z^2 + z^6) + c

• TheRedshiftRider 9: a*zˆ2-zˆ6+c

z := (f z^2 - z^6) + c

• SimonBrot2 4th

w := z^2
z := w (|u| + i |v|) + c

• General Quadratic Minus

z := ((x^2 - y^2) + i (2 d x y + e x^2)) + c

• General Quadratic Plus

z := ((x^2 + y^2) + i (2 d x y + e x^2)) + c

• Mothbrot 2nd 1x1

z := z^1 (|x| + i |y|)^1 + c

• Mothbrot 3rd 1x2

z := z^1 (|x| + i |y|)^2 + c

• Mothbrot 3rd 2x1

z := z^2 (|x| + i |y|)^1 + c

• Mothbrot 4th 1x3

z := z^1 (|x| + i |y|)^3 + c

• Mothbrot 4th 2x2 (aka SimonBrot 4th)

z := z^2 (|x| + i |y|)^2 + c

• Mothbrot 4th 3x1

z := z^3 (|x| + i |y|)^1 + c

• Mothbrot 5th 1x4

z := z^1 (|x| + i |y|)^4 + c

• Mothbrot 5th 2x3

z := z^2 (|x| + i |y|)^3 + c

• Mothbrot 5th 3x2

z := z^3 (|x| + i |y|)^2 + c

• Mothbrot 5th 4x1

z := z^4 (|x| + i |y|)^1 + c

• Mothbrot 6th 1x5

z := z^1 (|x| + i |y|)^5 + c

• Mothbrot 6th 2x4 (Simon’s Mothbrot)

z := z^2 (|x| + i |y|)^4 + c

• Mothbrot 6th 3x3 (aka SimonBrot 6th)

z := z^3 (|x| + i |y|)^3 + c

• Mothbrot 6th 4x2

z := z^4 (|x| + i |y|)^2 + c

36

• Mothbrot 6th 5x1

z := z^5 (|x| + i |y|)^1 + c

• General Abs Quadratic Minus

z := ((x^2 - y^2) + i (2 d |x y| + e x^2)) + c

• General Abs Quadratic Plus

z := ((x^2 + y^2) + i (2 d |x y| + e x^2)) + c

• zˆ2 exp(2 a / z) + c

z := z^2 exp(2 f / z) + c

A machine-readable version of this formula list is found in the ‘et’ repository: https://code.mathr.co.
uk/et/blob/kf:/kf/formulas.et This is used by ‘et’ when generating formula code (for Newton-Raphson
zooming, etc).

Command Line Usage
kf.exe [options]

-o, --load-map [FILE.kfb] load map file
-c, --load-palette [FILE.kfp] load palette file
-l, --load-location [FILE.kfr] load location file
-s, --load-settings [FILE.kfs] load settings file
-x, --save-exr [FILE.exr] save EXR
-t, --save-tif [FILE.tif] save TIFF
-p, --save-png [FILE.png] save PNG
-j, --save-jpg [FILE.jpg] save JPEG
-m, --save-map [FILE.kfb] save KFB

--save-kfr [FILE.kfr] save KFR
-z, --zoom-out [NFRAMES] zoom sequence
--log (debug|status|info|warn|error)

logging verbosity
-v, -V, --version show version
-h, -H, -?, --help show this help

Locations and settings can also be image files with embedded comments.

If any of the save options are give, KF switches to a non-interactive mode - it will render the image and
save to all specified types before quitting. No GUI.

A typical workflow would be to start KF without arguments, set up the window size (eg 640x360), image
size (eg 3840x2160), glitch low tolerance flag, etc, then save the settings to a .kfs file, before quitting.

Then launch KF from the command line telling it to load the settings file you just saved, plus the location
file you want to render, and where to save the output images to. Then wait patiently. You can write a
script that renders multiple locations in succession, either in batch .BAT on Windows, or in Shell .sh on
*nix with WINE.

Note that you might have to double up backslashes within quoted paths (if they contain spaces). Maybe
forward slashes work instead, but you do need quotes (either single '' or double "", in a matching pair
around the whole argument) if there are spaces. Your shell might also do funky stuff with slashes and
quotes, so you might need to double up or quadruple up the backslashes and quotes. Easiest to avoid
spaces and keep your files in the current working directory. . . Example:

kf.exe -s settings.kfs -l location.kfr -p out.png -j out.jpg -m out.kfb

Use --log info to disable the status updates, use --log warn to output only important messages. The
default is --log status.

With -z you can specify how many frames to render, or -1 to zoom all the way out. In zoom out mode
the output save filenames should contain a printf flag for an integer, for example image-%08d.png will

37

https://code.mathr.co.uk/et/blob/kf:/kf/formulas.et
https://code.mathr.co.uk/et/blob/kf:/kf/formulas.et

have 8 decimal digits padded with leading 0. This is filled by the frame number, which always starts
from 0. Zooming is by the zoom size in the settings file.

New in 2.14.6 is standalone KFB map colouring support with the -o/--load-map flag:

kf.exe -o map.kfb -c palette.kfp -p out.png

The -o/--load-map flag can also load raw iteration data from EXR.

New in 2.14.10 is KFR writing, if no image files need to be rendered it is very fast to output a zoom
sequence (note: no auto-iterations support in this mode).

Tiled Rendering

Tiled rendering is useful for large images, including images larger than the 2GB pixel data limit of
Windows bitmaps. The currently supported way of rendering tiled images is via EXR files, though there
are some Octave/Matlab scripts still available that can work with more common image files.

Example: target final size 64000x36000, tile factor 10x10. Configure image size to 6400x3600, adjust
other settings, save input.kfs and input.kfr. Then run (syntax for Bash shell):

kf-tile.exe input.kfs input.kfr 10
for tile in input-*.kfs
do
kf.exe -s ${tile} -l ${tile%.kfs}.kfr --save-exr ${tile%.kfs}.exr

done
exrtactile.exe input 10 0 output.exr # for side-by-side tiles
exrtactile.exe input 10 1 output.exr # for stratified tiles

The EXR tile assembler is available at https://mathr.co.uk/exrtact including Windows program binary.

Third-party Software
exrtact

https://mathr.co.uk/exrtact

exrtact is a suite of small command-line programs for manipulating EXR files. Of particular note is
exrtactile for tile assembly (see above).

kf-extras

https://code.mathr.co.uk/kf-extras/blob/HEAD:/README

git clone https://code.mathr.co.uk/kf-extras.git

kf-extras is a suite of small command-line programs for manipulating KFB files. Programs include
colouring algorithms (curvature, histogram, pseudo-de, rainbow, stretch) and other tools (de-histogram,
expmap, resize, statistics, to-exr, to-mmit) as well as a bash script to generate a zoom video (which needs
the mightymandel zoom assembler below). The programs use a small library to abstract the KFB and
PPM reading and writing, which can be used as a basis for your own programs.

zoom-tools zoom-interpolator

https://mathr.co.uk/zoom

zoom-tools is a suite of small command-line programs for turning EXR zoom sequences into zoom videos.
It has filters for input keyframes and output video frames, allowing video files to be encoded without
needing so much temporary disk space.

There is also an experimental OpenGL version that allows colouring with a fragment shader, which should
be significantly faster and more flexible (if you don’t mind a bit of coding).

38

https://mathr.co.uk/exrtact
https://mathr.co.uk/exrtact
https://code.mathr.co.uk/kf-extras/blob/HEAD:/README
https://mathr.co.uk/zoom

After Effects zoom tools

https://fractalforums.org/f/15/t/2965

saka on fractalforums.org is working on a plugin for Adobe After Effects:

I’m working on a plug-in for Adobe After Effects. It renders from the .kfb file data generated
by Kalles Fraktaler. I will release the plug-in as open-source, but of course Adobe products
are not free.

It’s still very much a work in progress, but I thought I’d share in case anyone is interested in
trying it out at this early stage. It might have some bugs.

Why After Effects? It provides a pretty solid animation, layering and rendering engine. All
the settings can be animated, and it is easy to build layered compositions using KF data.
Plus having 4k and 8k export in various codecs is appealing.

Requirements: After Effects 2019, Windows only.

See fractalforums.org for downloads and tutorials.

Key Frames Movie Maker

http://www.chillheimer.de/kallesfraktaler

The original Movie Maker by Karl Runmo. Has controls for changing speed, rotation, colour cycling, and
more, at specific frames. Also has an option for zoom depth text overlay. Works from KFB files and
generates multiple video file segments.

Yann Le Bihan’s Movie Maker 3D

http://www.chillheimer.de/kallesfraktaler/mmy/

Works from KFB files and generates video segments with a 3D effect:

This Manual is formed as a tutorial describing the steps to make a movie with 3D effect,
which includes all settings.

Dinkydau’s Mandel Machine Convertor

Mandel Machine is a fast Mandelbrot renderer for Windows written in Java and assembly.

Dinkydau on fractalforums.org has written:

something to convert the MMI file format to KFB

so that Mandel Machine glitches can be corrected in KF or KF renders can be coloured in Mandel
Machine. But Dinkydau has not released it. Maybe if you ask nicely you will be granted access. More
information at:

https://fractalforums.org/f/66/t/769/msg3960#msg3960

SeryZone’s Map Visualizer and Fractal Video Maker

Dinkydau on fractalforums.org has written:

My favorite zoom video maker (it only creates PNG sequences) is SeryZone’s kfb map visualiser.
It’s hard to use because of the very not-intuitive interface though.

http://www.fractalforums.com/announcements-and-news/sft-map-visualizer

With this tool you can create PNG images from KFB maps and use them as keyframes with
the other tool fractal video maker. Use fractal video maker to interpolate extra png files,
for example 60 between each keyframe for a 60 fps zoom video at a speed of 1 zoom per
second. (where by “zoom” I mean an increase in magnification by a factor 2, which is the
recommended zoom size in kalles fraktaler)

39

https://fractalforums.org/f/15/t/2965
http://www.chillheimer.de/kallesfraktaler
http://www.chillheimer.de/kallesfraktaler/mmy/
https://fractalforums.org/f/66/t/769/msg3960#msg3960
http://www.fractalforums.com/announcements-and-news/sft-map-visualizer

https://fractalforums.org/f/15/t/1364/msg7023#msg7023

Later in that thread are download links for the tools.

mightymandel zoom interpolator

mightymandel is a Mandelbrot set renderer using OpenGL.

https://mightymandel.mathr.co.uk/

It has a zoom assembler in its extra subfolder.

https://mightymandel.mathr.co.uk/current/usage.html#usagezoom

usage: zoom iwidth iheight iframes olength [ofps [oshutter]] \
< stream.ppm > stream.y4m

It is a bit picky about the format of the input PPM stream, and input frames must be 2x zoomed at each
frame from zoomed out to zoomed in. Arguments:

iwidth: input frame width

iheight: input frame height

iframes: input frame count

olength: output video length in seconds

ofps: output frame rate (25fps default)

oshutter: motion blur (0 no blur, 1 full blur, 0.5 default)

You might need to downscale the input PPM stream to something your GPU can manage, noting that the
internal code needs a texture 2x bigger than the input/output frames. Up to 4096x4096 input should be
ok on most modern cards. The output dimensions are the same as the input. For best quality downscale
after zoom interpolation, not before, if possible.

et zoom interpolator

et is an escape time fractal project implemented in Haskell.

https://mathr.co.uk/et

It has a forked version of the mightymandel zoom interpolator optimized for distance estimation rendering.
Usage is the same as the mightymandel zoom interpolator except that the input is raw headerless floating
point data (single channel containing distance estimate, normalized to 1 for the neighbouring pixel).

The difference to the mightymandel zoom interpolator is that it interpolates the DE data before colouring
instead of after, which gives a much smoother image (no strobing filaments). Output size is hardcoded
to 1920x1080, you can edit this near the top of the main() function in zoom.c before compiling. Input
frame size should be as large as possible for best quality.

The program has two more arguments compared to the mightymandel zoom interpolator: whether to
output a header (set to 1 unless you know what you are doing) and an “inverse video” flag that makes
it white on black instead of black on white. The output Y4M stream is mono, you might have to tell
ffmpeg to encode -pix_fmt yuv420p for some codecs.

usage: zoom iwidth iheight iframes olength \
[ofps [oshutter [header [inverse]]]] < stream.raw > stream.y4m

“book” zoom interpolator

The mightymandel zoom interpolator is better in every way (it is based on the same code, just enhanced).
And the book repository is 60MB because it has images. But if you want to study it for historical
reference:

wget -O Makefile https://code.mathr.co.uk/book/blob_plain/HEAD:/code/Makefile
wget -O zoom.c https://code.mathr.co.uk/book/blob_plain/HEAD:/code/zoom.c
make zoom

40

https://fractalforums.org/f/15/t/1364/msg7023#msg7023
https://mightymandel.mathr.co.uk/
https://mightymandel.mathr.co.uk/current/usage.html#usagezoom
https://mathr.co.uk/et

Or using git (note: the repository is large):

git clone https://code.mathr.co.uk/book.git
cd book/code
make zoom

Usage:

./zoom iwidth iheight iframes olength < stream.ppm > stream.y4m

File Formats
EXR Channels and Metadata

Discussion about a common format for escape time fractal data is taking place here:

https://fractalforums.org/f/11/t/3017

Here are the channels and metadata that KF currently supports:

• RGB half float colours

• normalized iteration count

uint32 N integer iteration count

– 0xFFFFFFFF is non-escaped before header metadata field int Iterations (or string
Iterations, as it can exceed the range of int)

– 0x00000000 is uncalculated/glitch/no-data-available.

– If actual iteration values can be zero or negative, add a bias constant to each count and store it
in the header metadata field int IterationsBias (or string IterationsBias, it can exceed
the range of int). The bias could be negative, this might allow you to store high iteration
counts without necessarily needing two channels if the actual min/max range is small enough)

For images with biased iteration counts above 0xFFFFFFFE, split into two channels:

uint32 N0 least significant 32 bits

uint32 N1 most significant 32 bits

(0xFFFFFFFF, 0xFFFFFFFF) is interpreted as non-escaped

For future supercomputers, this can be extended with N2 etc. . .

float NF fractional iteration count, expected to be in [0.0 .. 1.0)

The continuous iteration count (when escaped) is N+NF-IterationsBias. This is stored separately
to avoid losing precision at high iteration counts

• phase of first escaped Z value, measured in turns

float T in [0.0 .. 1.0)

It is desirable that this aligns with NF to give 2D exterior grid cell coordinates, currently KF aligns
only with Linear smoothing.

• directional DE (when derivatives have been calculated)

float DEX, float DEY directional distance estimate in cartesian form, normalized such that distance
to a neighbouring boundary pixel sqrt(DEXˆ2 + DEYˆ2) is approximately 1.0.

If some pixels have no directional DE the missing data can be written as (0.0, 0.0), but readers
should also handle NaNs in this case. The vector points away from the fractal boundary.

41

https://fractalforums.org/f/11/t/3017

	Kalles Fraktaler 2 +
	Quick Start
	Limits
	Known Bugs
	Differences From Upstream 2.11.1
	Incompatible Changes
	Other Changes

	Change Log
	TODO
	User Interface
	Calculations
	Newton-Raphson Zooming
	NanoMB
	Preprocessor
	Colouring

	Getting The Code
	Building On Linux
	Building on Windows 64-bit (may be adaptable to 32-bit)
	Legal
	Acknowledgements

	User Manual
	File
	Fraktal
	View
	Navigation
	Advanced
	About
	Formula dialog
	Bailout dialog
	Colors dialog
	Information dialog
	Formulas
	Command Line Usage
	Tiled Rendering

	Third-party Software
	exrtact
	kf-extras
	zoom-tools zoom-interpolator
	After Effects zoom tools
	Key Frames Movie Maker
	Yann Le Bihan's Movie Maker 3D
	Dinkydau's Mandel Machine Convertor
	SeryZone's Map Visualizer and Fractal Video Maker
	mightymandel zoom interpolator
	et zoom interpolator
	``book'' zoom interpolator

	File Formats
	EXR Channels and Metadata

