Lyapunov Space of Coupled FM Oscillators

Claude Heiland-Allen
claude@mathr.co.uk

Abstract

Consider two coupled oscillators, each modulating
the other’s frequency. This system is governed by
four parameters: the base frequency and modulation
index for each oscillator. For some parameter values
the system becomes unstable. The Lyapunov ex-
ponent is used to measure the instability. Images of
the parameter space are generated, with the number
crunching implemented on graphics hardware using
OpenGL. The mouse position over the displayed im-
age is linked to realtime audio output, creating an
audio-visual browser for the 4D parameter space.

Keywords
chaos, DSP, GPU

Figure 1: Example output.

1 Introduction

Soft Rock EP [ClaudiusMaximus, 2005] and
Soft Rock DVD [ClaudiusMaximus, 2006] ex-
plored the transitions between order and chaos
in coupled FM oscillators. A more recent con-
tinuation of this project is to make a map of the
parameter space of coupled FM oscillators on a
perceptually relevant level and use it in live per-
formance, choosing parameters on the basis of
desired sound character.

A bifurcation diagram produced by an ana-
logue Moog synthesizer [Slater, 1998] and im-
ages of Lyapunov fractals [Dewdney, 1991] were
inspiration to apply the latter technique to the
parameter space of coupled FM oscillators in
the digital realm.

2 Formulation
2.1 Coupled FM Oscillators

table x 2|table y 2| block~ 2|

[tabreceive~ y‘ [tabreceive~ x‘

pd send

ﬁ:absend«' x‘

ﬁ:absend~ y‘

Figure 2: Coupled FM oscillators in Pure-data.

Consider the two coupled oscillators in Fig-
ure 2. Pure-data’s model of interconnected
components each with their own internal state
maps poorly to GPU architecture. Consider-
ing the whole system as one and flattening the
internal state into a single phase space vector
leads to the following formulation as a mutual
recurrence relation:

Tpy1 = %(xn + I(fo + Mg cos(2myn—q)))

i1 = Bl + 10y + my con(zmana)))

where

440 _ t—s9
%(t)=t—[t], I(t) = SR2 2
Here x,,, y, is the phase of each oscillator at
time step n, d is a delay measured in sam-
ples, fz, fy is the base frequency of each os-
cillator as a MIDI note number, and mg;, m,
is the modulation index of each oscillator as a
MIDI note number. %(t) performs wrapping
into [0,1), with [¢]| being the flooring operation
(the largest integer not greater than t).
The four-dimensional parameter space vector
will be written

a = (f$7 fy7m:v>my>
and the (2d+ 2)-dimensional phase space vector
Zz = (xna Yns Tn—1,Yn—1,-++,Tn—d, yn—d)

with sample rate SR = 48000. For reasons ex-
plained in Section 5.2, d = 1 will be fixed.

2.2 Lyapunov Exponents

Lyapunov exponents can be used to measure the
stability (or otherwise) of a dynamical system.
A good introduction is found in Chapter 4.3
Lyapunov Ezponent [Elert, 2007]. The defini-
tion is covered in Chapter 13.7 Liapounov expo-
nents and entropies [Falconer, 2003] which also
relates it to measures of fractal dimension.

The Lyapunov exponent A measures diver-
gence in phase space:

|21(t) = 20(t)] = € |21(0) — 20(0)]

|21 () — 20(%)]

1
= lim —log ————— 7~
£ 121(0) = 20(0)]

t — 00 t
21(0) — Zo(O)

(2)

An attracting orbit has A < 0 and a divergent
(chaotic) orbit has A > 0.

A modified norm is required to take into ac-
count the wrapping of phase into [0, 1):

2l = \/Z (min(% (20, 1~ %())

For example the distance between 0.1 and 0.9 is
properly 0.2 (not 0.8) because 0.1 can be phase-
unwrapped to 1.1.

2.3 Viewing Planes

An image is 2D, which requires choosing a sub-
set of the 4D parameter space to visualize. Two
particular planes were chosen:

A+(G0,T0) = Qg + T0

OO = OO

A_(ao,r()) = ap + T0

—_—_0 0 == OO

where (u,v) is the coordinates of the pixel, ag
is the centre of the view, and rg is the radius of
the view.

These planes were chosen because they are
simple, while still being flexible enough to ex-
plore the whole 4D space. The A plane varies
both oscillators in the same direction, while the
A_ plane varies each oscillator in opposite di-
rections. To center on a particular target point
(fzs fy, Mz, my) one might use the Ay plane to

center on the midpoint

fm+fy fa:""fy mx+my m$+my
2 2 2 ’ 2

and then switch to the A_ plane to break the
(z,y) symmetry.

3 Implementation

The implementation uses OpenGL [Segal, 2013]
and OpenGL Shading Language [Kessenich,
2013] for computation and graphical rendering,
GLUT [Kilgard, 1996] for windowing and input
event handling, and JACK [Davis, 2013] for au-
dio output.

3.1 Introduction to Modern OpenGL

Modern OpenGL has a programmable shader
pipeline. Vertex attributes are read from vertex
buffers and processed by vertex shaders. The
outputs of the vertex shader (called varyings)
are further manipulated by an optional geome-
try shader stage. Geometry shaders can output
a different vertex count to their input count,
whereas vertex shaders are one-in one-out. The
result of the geometry shader can be captured
into another vertex buffer using transform feed-
back. Following the geometry shader the prim-
itives (points or triangles) are rasterized, and
varyings interpolated across each primitive. Fi-
nally a fragment shader takes these values and
computes the colour at that pixel. The output
of a fragment shader can be captured by attach-
ing a texture to a framebuffer.

3.2 Computation Overview

To render an image a texture is first filled with
(u,v) coordinates using a framebuffer object
and a fragment shader. This texture is copied to
a vertex buffer object, interleaved with an initial
phase space vector z = (0,0, 0,0) and Lyapunov
exponent statistics vector [= (0,0, 0,0) for each
point.

Using a vertex shader, a is calculated from
(u,v) using Equation 3, and then a rough es-
timate of the Lyapunov exponent is computed
using Equation 2 by perturbing z1(0) = zo(0)+6
with § small and performing ¢ = 256 iterations
of Equation 1. The first few repetitions are dis-
carded, along with those resulting in —oo, and
the rough A estimates are accumulated in {.

Between each repetition the working set is
compacted using a geometry shader. Points
whose mean Lyapunov exponent estimate
changed very little during the previous step are

plotted and removed from the working set. The
other points are kept to be refined further, di-
recting the computational effort on the points
that need it most: those slow to converge.

To ensure user interface responsiveness, the
computation is amortized over several frames.
The target frame period is divided by the mea-
sured time for one repetition to compute how
many repetitions to perform that frame. The
repetitions-per-frame increases as the working
set becomes smaller.

3.3 Noise Increases Stability

At the end of each repetition z; is kept instead
of zg. This effectively adds a small amount
of noise, counter-intuitively increasing stability.
Noise allows more of the phase space to be ex-
plored, and makes it more likely for the per-
turbed orbit to reach an attracting part of the
phase space.

3.4 Dither Increases Quality

To reduce grid sampling artifacts, (u,v) is per-
turbed within the bounds of its corresponding
pixel before calculating the a parameter vector
for each repetition.

4 Results

4.1 Examples

Figure 3(a) shows the initial view on starting
the interactive browser. Low frequencies to the
left are stable even at high modulation index
away from the central axis. High frequencies to
the right become chaotic at progressively lower
modulation index. (b) shows the A_ plane at
the same location. (c) shows bands alternat-
ing between stability and chaos. The bands be-
come distorted and collapse as the modulation
index and frequency increase. (d) shows its A_
plane, bands become rings. When the frequency
is greatly increased, the shapes become more
intricate. (e) exhibits spirals of stability, with
similar spirals in the A_ plane in (f).

When f, = f, and m, = m, the A, plane has
mirror symmetry about its horizontal axis, and
the A_ plane has two-fold rotational symmetry
about its centre. Breaking the symmetry and
setting f, # fy, or my # m, leads to diverse
forms. In particular Figure 3(h) has shapes that
resemble those of Lyapunov space images of the
logistic map.

4.2 Interactive Explorer

The implementation is an interactive audio-
visual explorer for the parameter space of cou-

(a) Ay((120,120,0,0),72) (b) A_((120,120,0,0),72)

¢) A ((95.2,95.2,32.6,32.6),4.5)

P : LAY y |
A-((117.0,148.4,20.4,2.7), 1.8)

(g) h) A, ((103.65, 108.41, 33.42, 10.93), 0.14)

Figure 3: Example images. Darker shades are stable, lighter shades chaotic.

pled FM oscillators. Clicking with the mouse
zooms the view about the clicked point. The left
button (or scroll up) zooms in, the right button
(or scroll down) zooms out, the middle button
centers the view on the target point. Pressing
the TAB key toggles between the A, and A_
planes in Equation 3, and F11 toggles full screen
operation.

While the GPU simulates and analyses one
oscillator pair per pixel, the CPU simulates one
oscillator pair with a determined from the pixel
under the mouse pointer. The image acts as a
map, a reference frame for chosing parameters
to audition by moving the mouse.

5 Conclusions
5.1 Original Intent

Earlier experiments used one Pure-data batch
mode instance per CPU core each sending anal-
ysis data to a realtime Pure-data instance. The
analysis used various methods (including FFT
for spectral statistics and the sigmund exter-
nal for pitch tracking) to classify points into
pitched (ordered, stable) or unpitched (chaotic,
unstable) with measures of distortion or noisi-
ness. Sadly this approach proved impractical as
it achieved only tens of pixels per second, even
with a fast multi-core CPU, and porting these
signal analysis algorithms to massively-parallel
programmable graphics hardware seemed to be
too difficult.

5.2 OpenGL Issues

The current implementation is hardcoded with
delay d = 1 and would be very awkward to
generalize. OpenGL architecture limits each
vertex attribute to four components with the
maximum number of attributes typically lim-
ited to sixteen. This totals 64 floats per ver-
tex, 6 of which are needed for the pixel coor-
dinates and Lyapunov exponent statistics accu-
mulation. Therefore using OpenGL imposes a
limit d < 28. For comparison the original ex-
periments in Soft Rock EP used Pure-data’s de-
fault block size of 64, with d = 32. Moreover,
increasing d increases video memory consump-
tion. With the maximum d = 27, browsing at
1920 x 1080 resolution would require over 1GB.

Future work on this project will look into
using OpenCL, which provides a heterogenous
CPU and GPU computation framework, in the
hope that it will avoid the inherent awkward-
ness of abusing OpenGL shaders to perform cal-
culations.

5.3 Audio Issues

While the implementation works as intended,
with d = 1 the sound is nowhere near as rich
and varied as with d = 32. With small d there
is much more very high frequency content in
interesting-looking regions. There seem to be
few if any regions of the parameter space with
both interesting appearance and palatable au-
dio frequencies at d = 1, while with high d there
are parameters that generate sounds that fluc-
tuate intermittently between smooth tones and
noise. Visualization with high d has not been
possible so far, so whether their neighbourhoods
look as interesting as they sound remains an
openquestion .

Unfortunately, heavy use of the GPU in the
interactive browser can block the operating sys-
tem for too long and cause audible glitches
(JACK xruns). This situation may change as
free drivers continue to improve, allowing use of
the browser in a live situation.

5.4 Pretty Pictures

Despite these shortcomings, I think the images
look good. I plan to render a selection at high
resolution and print postcards and posters. For
huge images it is possible to divide the image
plane into tiles and compute each tile in succes-
sion, finally combining the pieces into one large
picture.

There is also scope for video work, moving
and rotating the viewing plane through the 4D
parameter space, with different shapes forming
and collapsing over time. Rough benchmarks
take 5-10 seconds per frame at 1920 x 1080,
so it seems sensible to wait until faster cheaper
graphics cards become available.

6 Obtaining the Implementation

The implementation was written on
GNU/Linux Debian Wheezy running on a
quad-core AMDG64 processor with NVIDIA
GTX b550Ti graphics card using propri-
etary drivers. The source code is available at:
https://gitorious.org/maximus/lyapunov-fm

7 Acknowledgements

Thanks to the anonymous reviewers for their
constructive criticism on a number of issues,
and to Rob Canning, Adnan Hadzi, and Joanne
Seale for their helpful feedback on earlier ver-
sions of this paper.

References

ClaudiusMaximus. 2005. Soft Rock EP.
http://archive.org/details/
ClaudiusMaximus_-_Soft_Rock_EP.

ClaudiusMaximus. 2006. Soft Rock DVD.
http://archive.org/details/
ClaudiusMaximus_-_Soft_Rock_DVD.

Paul Davis. 2013. The JACK Audio Connec-
tion Kit. http://jackaudio.org.

A. K. Dewdney. 1991. Mathematical Recre-
ations: Leaping into Lyapunov Space. Scien-
tific American, 265:178-180.

Glenn Elert. 2007. The Chaos Hypertextbook.
http://hypertextbook.com/chaos/.

Kenneth Falconer. 2003. Fractal Geometry:
Mathematical Foundations and Applications,
Second Edition. Wiley.

John Kessenich. 2013. The
OpenGL Shading Language.
http://www.opengl.org/registry/doc/
GLSLangSpec.4.30.8.pdf.

Mark J. Kilgard. 1996. The OpenGL Utility
Toolkit (GLUT) Programming Interface.
http://www.opengl.org/documentation/
specs/glut/glut-3.spec.pdf.

Mark Segal. 2013. The OpenGL
Graphics System: A Specification.
http://wuw.opengl.org/registry/doc/
glspec43.core.20130214.pdf.

Dan Slater. 1998. Chaotic Sound Synthesis.
Computer Music Journal, 22(2):12-19.

