bitbreeder

Claude Heiland-Allen

2013-2019



Contents

0 ~J O U W N =

bitbreeder.hs . . . . . L e 2
bitbreeder_video.hs . . . . . . . .. 6
Compilehs . . . . . o 7
Config.hs . . . . . . o 8
Database.hs . . . . . . e 8
debug.c . . . . 9
deps.sh . . . o 9
encode.sh . . . . . L 10
Evolvehs. . . . 10
Expression.hs . . . . . o 12
expr.frag . . .. 12
extra/bitbreeder.cabal . . . . ... L 13
extra/LICENSE . . . . ... 14
extra/Setup.hs . . .. 26
Genetics.hs . . . . . e 26
GItIgnore . . .o 29
glyphs.png . . . . . L 30
BO.C ot v v v e e e e e e e e e 30
gradient.ppm . . . . . e e 31
judge.c . . 31
Live.C . o o 36
Makefile . . . . . . o 38
Metric.hs . . . . o o o 39
Population.hs . . . . .o 40
README . . . . e 41
SPECETOGTAINL.C . . o v v v v v v it e e e e e e e e e e e e e e e e e e e e 44
start.sh . . . o e 48
Statistics.hs . . . . . L 49
strokefrag . . . L e 50
Video.hs . . . . . 50

1 Dbitbreeder.hs

module

import
import
import
import
import

Main (main) where

Control. Exception (handle, SomeException)
Control.Monad (forM_, when)
Control.Monad . Random (evalRandIO)

Control. Concurrent (forkIO) -- , threadDelay)
GHC. Conc (numCapabilities)



10

15

20

25

30

35

40

45

50

55

60

bitbreeder bitbreeder.hs

import Data.Maybe (listToMaybe)

import Data.Time. Clock (getCurrentTime, diffUTCTime)

import Data. Vector.Unboxed ((!), (//))

import System.IO (hSetBuffering, BufferMode(LineBuffering), hPutStrLn, stdout) »
& —— , stderr)

import Graphics.UI. Gtk
import Control.Concurrent .STM
import System.Process

import Expression

import Evolve

import Compile

import Population

import qualified Metric as M

gui :: (TVar [TVar Population], TBQueue Item) -> IO ()
gui (dbsV, toAudio) = do
wi <- windowNew
nb <- notebookNew
visibleV <- newTVarIO 0
_ <-nb ‘on‘ switchPage $ atomically . writeTVar visibleV
let addTab tabname = do
db <- atomically $ (readTVar . head) =<< readTVar dbsV
databaseV <- newTVarIO db
targetV <- newTVarlO M.emptyTarget
weightV <- newTVarlO M.emptyWeight
atomically $ modifyTVar dbsV (databaseV:)
v <- vBoxNew False 5
let resort = do
t <- readTVar targetV
w <- readTVar weightV
modifyTVar databaseV $§ target t w
tSlider k = do
t <- hScaleNewWithRange (-5) 5 0.01
scaleSetDrawValue t False
widgetSetSizeRequest t 512 24
rangeSetValue t 0
- <-t ‘on‘ valueChanged $ do
u <- rangeGetValue t
atomically $ do
modifyTVar targetV (\(M.T z) -> M.T § z // [(k, realToFrac u)v
S D)
resort
return t
wSlider k = do
w <- hScaleNewWithRange 0 1 0.001
scaleSetDrawValue w False
widgetSetSizeRequest w 256 24
rangeSetValue w 0
- <-w ‘on‘ valueChanged $ do
u <- rangeGetValue w
atomically $ do
modifyTVar weightV (\(MW z) -—> MW § z // [(k, realToFrac u)v
o)
resort
return w



bitbreeder bitbreeder.hs

row k n = do
h <- hBoxNew False 5
65 1 <- labelNew (Just n)

widgetSetSizeRequest 1 160 24

t <— tSlider k

w <— wSlider k

boxPackStart h 1 PackNatural 0
70 boxPackEnd h w PackGrow 0

boxPackEnd h t PackGrow 0

boxPackStart v h PackNatural 0

forM_ (zip [0..] names) $ uncurry row
widgetShowAll v
75 page <— notebookAppendPage nb v tabname

notebookSetCurrentPage nb page
let topWatcher n = do
n’ <- atomically $ do
mi <- listToMaybe . toAscList <$> readTVar databaseV
80 case mi of
Just i | itemID i /= n -> do
vis <- (page ==) <$> readTVar visibleV
when vis $ writeTBQueue toAudio i
return (itemID i)
85 _ —=> retry
topWatcher n’
visWatcher False = do
atomically $ do
vis <- (page ==) <$> readTVar visibleV
90 if not vis then retry else do
mi <- listToMaybe . toAscList <$> readTVar databaseV
case mi of
Just i —> writeTBQueue toAudio i
-> return ()
95 visWatcher True
visWatcher True = do
atomically $ do
vis <- (page ==) <$> readTVar visibleV
when vis retry
100 visWatcher False
_ <- forkIO $ topWatcher (-1)
_ <- forkIO $ visWatcher False
return ()
namesV <- newTVarlO $ words ”aardvark beaver chimp donkey elephant frog goat v
& halibut iguana jackdaw kitten leopard manatee newt otter pigeon quail »
& rabbit stoat tiger uncle velociraptor whale xtinct yow zzz”
105 let addTab’ = do
name <- atomically $ do
“"(n:ns) <- readTVar namesV
writeTVar namesV ns
return n
110 addTab name
b <- buttonNewFromStock stockAdd
_<- b ‘on‘ buttonActivated $ addTab’
widgetShowAll b
notebookSetActionWidget nb b PackStart
115 set nb [notebookScrollable := True, notebookHomogeneous := True]
set wi [windowTitle := ”BitBreeder”, containerChild := nb]
widgetSetSizeRequest wi 1024 576



120

125

130

135

140

145

150

155

160

165

170

bitbreeder

bitbreeder.hs

windowMove wi 0 0

_ <— wi ‘onDestroy ¢ mainQuit
widgetShowAll wi

addTab’

mainGUI

names :: [String]
names = [ m++ 7 (7 ++ p + 7)
& novelty”]

measurements :: [String]
measurements =

[ 7loudness”

, "tonality”

, 7centroid”

, "variance”

, 7skewness”

, 7kurtosis”

parameters :: [String]
parameters =

[ 7average”

, "variability”

, 7granularity”

]

main :: IO ()
main = do

”

hSetBuffering stdout LineBuffering

args <- initGUI
gui =<< evolution args

breeder :: TVar [TVar Population] -> TBQueue E —-> 10 ()

breeder dbsV toJudge = loop
where
loop = do
ess <- map (map itemExpr
& readTVar dbsV)
es <- evalRandIO (crossB
forM_ es $§ atomically
loop

judge :: TVar [TVar Population] —> TBQueue E —> Int -> Int -> IO ()

judge dbsV toJudge inc = loop
where
loop i = do
e <- atomically $ readTB
ignoreErrors $ do

| m <- measurements, p <- parameters | ++ [”V

toAscList) <$> atomically (mapM readTVar =<< ¢

reed ess)
writeTBQueue toJudge

Queue toJudge

let so = 7./0/” ++ show i ++ 7.so0”

compileSO e so

(-, Just hout, _, p) <- createProcess (proc ”./bitbreeder_judge”
& show i]){ std_-out = CreatePipe, std_err = Inherit }

v@(M.A vv) <- M.read hout

_ <- waitForProcess p
when (vv ! 0 > 0) $ do
let it = Item i e v

[so, ¥



bitbreeder bitbreeder_video.hs

atomically $ do
dbs <- readTVar dbsV
forM_ dbs $ \db -> modifyTVar db (update it)
175 loop (i + inc)

ignoreErrors :: I0 () -> 10 ()

ignoreErrors = handle ((\- —> return ()) :: SomeException —> IO ())
180  evolution :: [String] —> IO (TVar [TVar Population], TBQueue Item)
evolution args = do

toJudge <- newTBQueuelO (fromIntegral $ 2 x numCapabilities)
toAudio <- newTBQueuelO (fromIntegral $ 2 % numCapabilities)
dbV <- newTVarlO empty
185 dbsV <- newTVarIlO [dbV]
_ <- forkIO $ breeder dbsV toJudge
_ <- forkIO $ audio args toAudio
forM_ [0 .. numCapabilities — 1] $ forkIO . judge dbsV toJudge numCapabilities
return (dbsV, toAudio)

190
audio :: [String] -> TBQueue Item -> IO ()
audio args toAudio = do
(Just audioh, -, _, _) <- createProcess (proc ”./bitbreeder_audio” []){ std-inv
= CreatePipe, std_err = Inherit }
(Just videoh, _, _, _) <- createProcess (proc ”./bitbreeder_video” args){ v
& std_.in = CreatePipe, std_.err = Inherit }
195 hSetBuffering audioh LineBuffering

hSetBuffering videoh LineBuffering
hPutStrLn videoh (show (0 :: Double, I 0))
start <- getCurrentTime
let loop n = do
200 it <- atomically $ readTBQueue toAudio
when (itemID it /= n) $ do
now <- getCurrentTime

let frame :: Double
frame = 25 x realToFrac (diffUTCTime now start + 4.5)
205 hPutStrLn audioh (”./0/” 4+ show (itemID it) 4++ ”.so”)

hPutStrLn videoh (show (frame, itemExpr it))
loop (itemID it)
loop (-1)

2 bitbreeder_video.hs

module Main(main) where
import Prelude hiding (init)

5 import Control.Exception (handle, SomeException)
import Control.Monad (forever , when)
import System.Environment (getArgs)
import System.IO (hSetBuffering, BufferMode(LineBuffering), stdin, stdout)

10 import Graphics.UIl.GLFW

import Config (videoX, videoY, videoW, videoH)
import Expression
import Video

15



20

25

30

35

10

15

20

25

bitbreeder Compile.hs

main :: IO ()

main = do
hSetBuffering stdin LineBuffering
hSetBuffering stdout LineBuffering
args <- getArgs
let record = ”"—--record” ‘elem‘ args
True <- init
windowHint $ WindowHint’ Resizable False
windowHint $ WindowHint’ Decorated False
Just window <- createWindow videoW videoH ” BitBreeder Expression” Nothing v~

& Nothing

setWindowPos window videoX videoY
makeContextCurrent (Just window)
s <— setupGL
draw s (I 0)

handle ((\- -> return ()) :: SomeException —> IO ()) $ forever $ do
ne@(n, e) <- readLn :: IO (Double, E)
print ne
draw s e

swapBuffers window
when record $ captureToPNG (pngFilename (floor n))
pollEvents

destroyWindow window

terminate

3 Compile.hs
module Compile (compile, compileSO) where

import System.Process (rawSystem)

import Expression

compile :: E -> String

compile X = 7t”

compile (I i) = show i

compile (U u e) = compileU u (”(” 4++ compile e ++ 7)7)

compile (B b e f) = compileB b (”(” 4++ compile e ++ 7)”) (”(” 4+ compile f ++ 7)»
o 71)

compile (T e f g) = ”(” ++ compile e ++ 7)?(” 4++ compile f 4+ 7):(” 4+ compile gv
N 57)57

compileU :: U —> String —-> String

compileU Neg s = 7-"7 4+ s

compileU LNot s = 7" —(1”7 4+ s ++ 7)”
compileU BNot s = 777 ++ s

compileB :: B —> String -> String —-> String

compileB Add = op 7+”

compileB Sub = op 7-"

compileB Mul = op "%”

compileB Div = fn ”safe_div”

compileB Mod = fn ”safe_mod”

compileB BAnd = op 7&”

compileB LAnd = \1 r => 7—(" 4+ op 7&&" | r ++ 7)”
compileB BOr = op ”|”

compileB LOr = \1 r —> 7= ++ op "||” I r ++ 7)”



30

35

40

45

10

15

20

25

bitbreeder

Config.hs

compileB XOr = op 777
compileB ShL = op "<<”
compileB ShR = op ">>”

compileB Lt =\1r > 7—-(" 4+ op "<” | r ++4 7)”
compileB Gt =\l 1t —> 7= ++ op "> 1 r ++ 7)”
op, fn :: String -> String -> String —-> String
op oab=a+4++o0++b
fn fab:fH”(”HaH”,”HbH”)”
compileSO :: E —> FilePath —> I0 ()
compileSO e so = do

let code = compile e

_ <- rawSystem ”"gcc”

[ 77781,/d:C99777 ”*W”, 7770377’ 77781,1211.6(1’77 ”*fPIC”, ”gO.C”

, 77_0737 so , ”—DT:” ++ COde, ”—MDE:\”” _~_+ COde ++ 77\77)7

]

return ()

4 Config.hs

module Config where
videoW, videoH, videoX, videoY

videoW = 1920
videoH = 540

videoX = screenlW - videoW
videoY = 0

{_
videoW = screen2W
videoH = (9 % videoW) ‘div‘ 16

videoX = screenlW

videoY = (screen2H - videoH) ‘div*

screenlW | screenlH , screen2W,

screenlW = 1920
screenlH = 1080

screen2W = 1024
screen2H = 768

5 Database.hs

module Database (DB(), empty, insert,

import Prelude hiding (splitAt)

Int

2

screen2H

import Data.List (insertBy, sortBy)

import qualified Data.List as L (splitAt)

import Data.Ord (comparing)

Int

sortOn, toAscList ,

splitAt ,

fromList) where



10

15

20

25

30

35

40

bitbreeder debug.c
data DB a = DB
{ -insert :: a —> DB a
, -sortOn :: (a => Double) —> DB a
, -toAscList :: [a]
, -splitAt :: Int -> (DB a, DB a)
empty :: DB a
empty = mkDB (const 0) []
insert :: a -> DB a —> DB a
insert = flip _insert
sortOn :: (a —> Double) -> DB a -> DB a
sortOn = flip _sortOn
toAscList :: DB a —> [a]
toAscList = _toAscList
splitAt :: Int -> DB a -> (DB a, DB a)
splitAt = flip _splitAt
fromList :: [a] -> DB a
fromList = foldr insert empty
—— invariants
—— list = L.sortBy (comparing snd) list
-— all [metric x =1y | (x, y) <= list]
mkDB :: (a —> Double) -> [(a, Double)] -> DB a
mkDB metric list = DB
{ -insert = \item -> mkDB metric (insertBy (comparing snd) (item, metric

G item) list)

, —sortOn = \metric’ —> mkDB metric’ (sortBy (comparing snd) (map (\(x, -) ¥

& —> (x, metric’ x)) list))

, _toAscList = map fst list

, _splitAt = \n —> let (lo, hi) = L.splitAt n list
& metric hi)

6 debug.c

#include <stdio.h>
#include <dlfcn.h>

int main(int argc, char xxargv) {
void *dl = dlopen(argv[1], RTLDNOW) ;

const char *xcode = dlsym(dl, ”code”);
printf("%s\n”, code);
return O;

}

7 deps.sh

#!/bin/sh

cabal sandbox init
cabal install alex happy
cabal install gtk2hs-buildtools

in (mkDB metric lo, mkDB v



10

15

20

25

10

15

20

bitbreeder encode.sh

cabal install GLFW-b gtk MonadRandom OpenGLRaw stm syb syz Vector

8 encode.sh

#!/bin /bash
SESSION="${1}”
if [ ”x${SESSION}” = "x” ]
then
exit
fi
time ./bitbreeder_video —-record < "${SESSION}.out” > /dev/null

FRAMES="$ (( $(avprobe —-v quiet —show_streams -i "${SESSION}.wav” -of json | grepv

& duration_ts | sed ’'s|.x: \(.x\),.x|\1l]g’) / 1920 ))”
pushd ”${SESSION}”
PREVFRAME="00000000.png”
for FRAME in $(seq 7$(( FRAMES - 125 ))”)
do
THISFRAME="$ (printf "%08d” ”${FRAME}”) .png”
if [ -f 7?${THISFRAME}” |

then
PREVFRAME="$ { THISFRAME}”
else
In -s ”${PREVFRAME}” ”${THISFRAME}”
fi
done
for FRAME in $(seq ”$(( FRAMES - 124 ))” ”${FRAMES}”)
do

THISFRAME="$ ( printf ”%08d” ”${FRAME}”) .png”
In -s 700000000.png” " ${THISFRAME}”
done
popd
avconv —i 7${SESSION}/%08d.png” —i ”${SESSION}.wav” -shortest ”${SESSION }.mkv”

9 Evolve.hs

module Evolve (crossBreed) where

import Control.Monad (replicateM , forM)
import Control.Monad.Random (MonadRandom, getRandomR)

import Expression
import Genetics (nodes, exchange)

mutatel :: (Applicative m, MonadRandom m) => E -> m E
mutatel X = return X
mutatel (I i) = do
k <= coin 0.1
if k
then do
j <- getRandomR (1, 64)
return (I j)
else return (I i)
mutatel (U u e) = U u <$> mutatel e
mutatel (B b e f) =B b <$> mutatel e <> mutatel f
mutatel (T e f g) T <$> mutatel e <*> mutatel f <*> mutatel g

coin :: (Functor m, MonadRandom m) => Double —> m Bool

10



25

30

35

40

45

50

55

60

65

70

75

bitbreeder

Evolve.hs

coin p = (< p) <$> getRandomR (0, 1)

terminal :: (Functor m, MonadRandom m) => m E
terminal = do

¢ <- coin 0.5

if ¢ then return X else I <$> getRandomR (1, 64)

data F
=FU U
| FB B
| FT
deriving (Read, Show, Eq)

getRandomE :: (Functor m, MonadRandom m, Enum e, Bounded e¢) => m e
getRandomE = self
where

self = do
mi <- return minBound ‘asTypeOf‘ self
ma <- return maxBound ‘asTypeOf‘ self
toEnum <$> getRandomR (fromEnum mi, fromEnum ma)

function :: (Functor m, MonadRandom m) => m F
function = do
¢ <- coin 0.05
if ¢ then FU <$> getRandomE else do
d <- coin 0.05
if d then return FT else FB <$> getRandomE

grow :: (Applicative m, MonadRandom m) => Int -> m E
grow 0 = terminal
grow d = do
¢ <- coin 0.25
if ¢ then terminal else do
f <— function
case f of
FU u —> U u <8> grow (d - 1)
FB b -—> B b <$> grow (d - 1) <> grow (d - 1)
FT > T <$> grow (d - 1) <> grow (d - 1) <*> grow (d - 1)

breed :: (Applicative m, MonadRandom m) => E -> E -> m [E]
breed e0 el = do

n0 <- getRandomR (0, nodes e0 - 1)

nl <- getRandomR (0, nodes el - 1)

let (f0, f1) = exchange e0 n0 el nl

return [f0, f1]

crossBreed :: (Applicative m, MonadRandom m) => [[E]] -> m [E]
crossBreed ess = do
ws <— replicateM 2 $ getRandomR (0, length ess - 1)
“[e0, el] <- forM ws $ \w —> do
let es = take minPopCount (ess !! w)
if length es < minPopCount then grow 5 else do
n <- getRandomR (0, minPopCount - 1)
mutatel (es !! n)
e2 <- grow 5
(e2:) <$> breed e0 el

11



80

10

15

10

15

20

25

bitbreeder Expression.hs

minPopCount :: Int
minPopCount = 64

10 Expression.hs

{-# LANGUAGE DeriveDataTypeable #-}
module Expression where

import Data.Data (Data)
import Data. Typeable (Typeable)

data E=X | I Int | UUE | BBEE | TEEE
deriving (Read, Show, Eq, Ord, Data, Typeable)

data U = Neg | LNot | BNot
deriving (Read, Show, Eq, Ord, Enum, Bounded, Data, Typeable)

data B = Add | Sub | Mul | Div | Mod | BAnd | LAnd | BOr | LOr | XOr | ShL | ShRv
G | Lt | Gt
deriving (Read, Show, Eq, Ord, Enum, Bounded, Data, Typeable)

count :: Integer -> Integer

count 0 = 0

count 1 = 65

count n = 3 % count (n - 1) + sum [ 14 % (count 1 + count r) | 1 <= [1 .. n - ¢
G 2], let r=mn-1-11]

11 expr.frag

#version 400 compatibility

uniform sampler2D glyphs;
uniform sampler2DRect expression;

const float yf = 4.0/6.0;
const float ylo = 1.0/6.0;
const float yhi = 5.0/6.0;

float myTextureQueryLod (sampler2D tex, vec2 tc) {
return textureQueryLod (tex, tc).y;
//return max (0.0, 10.0 + log2 (max(length (dFdx(tc)), length(dFdy(tc)))));

}

void main () {

vec2 tc = gl -TexCoord [0].xy * vec2(0.125, 0.25 % yf);

float lod = myTextureQueryLod (glyphs, tc);

vec2 gc = floor (gl-TexCoord [0].xy % vec2(1.0, yf));

vec3 glyph = texture2DRect (expression, gc).xyz;

vec2 glyphCoord = glyph.xy;

vec2 subCoord = fract (gl-TexCoord [0].xy % vec2(1.0, yf));

if (subCoord.y < ylo) {
glyphCoord = vec2(0.125, 0.7

} else if (yhi < subCoord.y) {
glyphCoord = vec2(0.125, 0.7
subCoord.y 4= ylo - yhi;

5);
5);

}

subCoord.y —-= ylo;

12



30

10

15

20

25

30

35

40

45

50

bitbreeder

extra/bitbreeder.cabal

}

12

vecd (glyphRGB,

subCoord #= vec2(0.125, 0.25 / yf);
vec3 glyphRGB = textureLod (glyphs, glyphCoord + subCoord, lod).xyz;
gl_FragColor =

1.0);

extra/bitbreeder.cabal

name:

version :
synopsis:

—— description:
homepage:
license:
license —file:
author:
maintainer:
category:
build -type:
cabal-version:

executable bitbreeder
main—1is :

bitbreeder . hs

other —modules:

Compile
Database
Evolve
Expression
Genetics
Metric
Population

build —depends:

base < 5,
MonadRandom ,
gtk,

process ,
stm

syb,

SYyZ ,

time ,

vector

bitbreeder
0.1.0.0

evolve noisy arithmetic expressions

http://code.mathr.co.uk/bitbreeder

GPL-3
LICENSE

Claude Heiland-Allen
claude@mathr. co.uk

Sound
Simple
>=1.8

executable bitbreeder_video

main—is:

bitbreeder_video . hs

other —-modules:

Expression
Video

build —~depends:

base < 5,
cairo ,
gtk ,
gtkglext ,
OpenGLRaw

——executable bitbreeder_judge

c—sources:

13



55

10

15

20

25

30

35

40

45

bitbreeder extra/LICENSE

— judge.c
—-— extra-libraries:

— m, dl, fftw3f

——executable bitbreeder_audio
—-— c-sources:

- live.c
—-— extra-libraries:
—— m, dl, jack

13 extra/LICENSE

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program—--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, to0o.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it , that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License

giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free software. For both users’ and

14



50

55

60

65

70

75

80

85

90

95

100

bitbreeder extra/LICENSE

authors’ sake, the GPL requires that modified versions be marked as

changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer

can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we

stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally , every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general -purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow .

TERMS AND CONDITIONS
0. Definitions.
”This License” refers to version 3 of the GNU General Public License.

”Copyright” also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

”The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as ”you”. ”Licensees” and

"recipients” may be individuals or organizations.

To ”"modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a ”"modified version” of the
earlier work or a work ”based on” the earlier work.

A 7covered work” means either the unmodified Program or a work based
on the Program.

To ”propagate” a work means to do anything with it that, without
permission , would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To ”"convey” a work means any kind of propagation that enables other

parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

15



105

110

115

120

125

130

135

140

145

150

155

bitbreeder extra/LICENSE

An interactive user interface displays " Appropriate Legal Notices”
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The ”source code” for a work means the preferred form of the work
for making modifications to it. ”Object code” means any non—-source
form of a work.

A 7 Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The ”System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
”Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The ” Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated

conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a

16



160

165

170

175

180

185

190

195

200

205

210

215

bitbreeder extra/LICENSE

covered work is covered by this License only if the output, given its
content , constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey , without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

)

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures .

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s
users , your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the

terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it , and giving a relevant date.

17



220

225

230

235

240

245

250

255

260

265

270

bitbreeder extra/LICENSE

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices”.

¢) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
7aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer , valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the

Corresponding Source from a network server at no charge.

c¢) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

18



275

280

285

290

295

300

305

310

315

320

325

330

bitbreeder extra/LICENSE

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities , provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to—peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A 7User Product” is either (1) a ”consumer product”, which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation

into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used” refers to a

typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial , industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information” for a User Product means any methods,
procedures , authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates

19



bitbreeder extra/LICENSE

for a work that has been modified or installed by the recipient, or for

the User Product in which it has been modified or installed. Access to a

network may be denied when the modification itself materially and

adversely affects the operation of the network or violates the rules and
335 protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in

340 source code form), and must require no special password or key for
unpacking , reading or copying.

7. Additional Terms.

345 ” Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions

350 apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
355 remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material , added by you to a covered work,
for which you have or can give appropriate copyright permission.

360
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
365 a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
370 Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
375
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
380 trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for

385 any liability that these contractual assumptions directly impose on
those licensors and authors.

20



390

395

400

405

410

415

420

425

430

435

440

bitbreeder extra/LICENSE

All other non-permissive additional terms are considered ”further
restrictions” within the meaning of section 10. If the Program as you
received it , or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction , you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files , a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally ;, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated , you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer—to—peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

21



bitbreeder extra/LICENSE

445
10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
450 propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An 7entity transaction” is a transaction transferring control of an

organization , or substantially all assets of one, or subdividing an

455  organization , or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the

460 Corresponding Source of the work from the predecessor in interest , if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
465 not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
470
11. Patents.

A ”contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
475 work thus licensed is called the contributor’s ”contributor version”.
A contributor’s "essential patent claims” are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
480 by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
485 this License.

Each contributor grants you a non-exclusive , worldwide, royalty—-free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and

490 propagate the contents of its contributor version.

In the following three paragraphs, a ”patent license” is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to

495 sue for patent infringement). To ”grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license ,

500 and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a

22



505

510

515

520

525

530

535

540

545

550

555

bitbreeder extra/LICENSE

publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available , or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. ”Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If , pursuant to or in connection with a single transaction or
arrangement , you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is ”discriminatory” if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement ,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,

23



bitbreeder extra/LICENSE

but the special requirements of the GNU Affero General Public License,
560 section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

565 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

570 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License ”or any later version” applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software

575 ~ Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
580 versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
585 permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.
590
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM ”AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 ~THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

600 16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE

USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF

DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD

PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS) ,

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610  SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
615 above cannot be given local legal effect according to their terms,

24



620

625

630

635

640

645

650

655

660

665

670

bitbreeder extra/LICENSE

reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the ”copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction , make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate
parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an ”about box”.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a ”copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library , you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General

25



10

15

20

25

30

35

40

45

bitbreeder extra/Setup.hs

Public License instead of this License. But first , please read
<http://www.gnu.org/philosophy /why-not-1lgpl.html>.

14 extra/Setup.hs

import Distribution.Simple
main = defaultMain

15 Genetics.hs

{-# LANGUAGE ScopedTypeVariables, FlexibleInstances, Rank2Types,
UndecidableInstances , DeriveDataTypeable #-}

—— Based on:

—— Module : GenProg.GenExpr.Data

—— Copyright : (c) 2010 Jan Snajder

—— License : BSD-3 (see the LICENSE file)

—— Maintainer : Jan Snajder <jan.snajder@fer.hr>
—— Stability :  experimental

—— Portability : mnon-portable

—— Implementation of the Q@QGenProg.GenExpr@ interface for members of
—— the ’Data’ typeclass. The implementation is based on SYB and SYZ
—— generic programming frameworks (see

—— <http://hackage. haskell.org/package/syb> and

—— <http://hackage. haskell.org/package/syz> for details).

—— NB: Subexpressions that are candidates for crossover points or

—— mutation must be of the same type as the expression itself , and
—— must be reachable from the root node by type—preserving traversal.
—— See below for an example.

module Genetics where

import Data. Generics

import Data.Generics. Zipper
import Data.Maybe

import Control.Monad

—— | This typeclass defines an interface to expressions

—— that can be genetically programmed. The operations that must be
—— provided by instances of this class are used for the generation

—— of random individuals as well as crossover and mutation operations.
—— (An instance for members of the @Data@ typeclass is provided in

—— 7GenProg.GenExpr.Data” .)

—— Minimal complete definition: ’exchange’, ’nodeMapM’, ’nodeMapQ’,
—— and ’nodelndices ’.
class GenExpr e where
—— | Exchanges subtrees of two expressions:
—— @exchange el nl e2 n2@ replaces the subexpression of @el@ rooted in

26

node



50

55

60

65

70

75

80

85

90

95

100

bitbreeder Genetics.hs

-}

in

—— @nl@ with the subexpression of @e2@Q rooted in @n2@, and vice versa.
exchange :: e —=> Int -> e —=> Int -> (e, e)

-— | Maps a monadic transformation function over the immediate

—— children of the given node.

nodeMapM :: Monad m => (e -=>m e) —> e —> m e

-— | Maps a query function over the immediate children of the given
-— node and returns a list of results.

nodeMapQ :: (e —=> a) -> e -> [a]

—— | A list of indices of internal (functional) and external

—— (terminal) nodes of an expression.

nodelndices :: e —> ([Int], [Int])

—— | Adjusts a subexpression rooted at the given node by applying a
-— monadic transformation function.

adjustM :: (Monad m) => (e —>m e) —> e —> Int > m e
—— | Number of nodes an expression has.
nodes :: e —-> Int

—— | The depth of an expression. Equals 1 for single -node expressions.
depth :: e —> Int

—— | Default method (expensive because it calls exchange twice).
adjustM f e n = replace e n ‘liftM * f (get e n)
where get e n = fst $ exchange e 0 e n
replace el nl e2 = fst $ exchange el nl e2 0

nodes = (+1) . foldr (+) 0 . nodeMapQ nodes

depth = (+1) . foldr max 0 . nodeMapQ depth

stance (Data a) => GenExpr a where

—-— | Exchanges two expression nodes. Works by using two generic
—— zippers and exchanging their holes.
exchange el nl €2 n2 = (fromZipper yl, fromZipper y2)
where z1 = typeMoveForUnsafe nl $§ toZipper el
z2 = typeMoveForUnsafe n2 $§ toZipper e2
(yl,y2) = exchangeHoles zl z2

—— | Adjust an expression node. Works by applying a monadic
—— tranformation on a zipper hole.
adjustM f e n = fromZipper ‘liftM ¢ transM (mkM f) z
where z = typeMoveForUnsafe n (toZipper e)
nodeMapM f = gmapM (mkM f)
nodeMapQ q (x::a) = concat $ gmapQ (][] ‘mkQ‘ (\(y::a) -> [q y])) x

nodelndices = index 0 [] [] . toZipper

—— Zipper moves
type Move a = Zipper a -> Maybe (Zipper a)

backtrack :: (Typeable a) => Move a
backtrack z = do

z2 <- up z

27



105

110

115

120

125

130

135

140

145

150

155

160

bitbreeder Genetics.hs

right z2 ‘mplus‘® backtrack z2

repeatM :: (Monad m) => Int -> (a ->m a) -> a -—> m a
repeatM 0 _ x = return x
repeatM n f x = f x >= repeatM (n - 1) f

—— Moves zipper to next node in DFS order, but does not move down the
—— zipper if node satisfies query ’q’.
nextDfsQ :: Typeable a => GenericQQ Bool -> Move a
nextDfsQ q z = (if query q z then Nothing else down’ z)
‘mplus ¢ right z ‘mplus® backtrack z
—— Moves the zipper to node ’'n’ from current position in DFS order,
—— skipping nodes not satisfying query ’q2’ and descending only down
—— the nodes satisfying query ’'ql’.
moveForQ :: (Typeable a) => GenericQ Bool —> GenericQ Bool —> Int -> Move a
moveFor@Q - _ 0 z = Just z
moveForQ ql g2 n z = do
z2 <- nextDfsQ ql =z
moveForQ ql g2 (if query q2 z2 then n - 1 else n) z2

—— Moves the zipper to node ’'n’ from current position in DFS order,

—— counting only nodes of type ’a’, and not descending down the nodes
—— of other type.

typeMoveFor :: (Typeable a) => Int -> Move a

typeMoveFor n (z::Zipper a) =

moveForQ (True ‘mkQ‘ (\(-::a) —> False)) (False ‘mkQ‘ (\(-::a) —> True)) n z

—— | Same as typeMoveFor, but throws an error if node index is out of
—— bound.
typeMoveForUnsafe :: (Typeable a) => Int -> Zipper a —> Zipper a
typeMoveForUnsafe n z = fromMaybe
(error $ ”Genetics.typeMoveForUnsafe: Nonexisting node.”)
(typeMoveFor n z)

—— | Exchanges two zipper holes.

exchangeHoles :: (Data a) => Zipper a —> Zipper a -> (Zipper a, Zipper a)
exchangeHoles (zl::Zipper a) (z2::Zipper a) = (yl,y2)
where Just hl = getHole zl1 :: Maybe a

Just h2 = getHole z2 :: Maybe a
yl = setHole h2 zl
y2 = setHole hl 22

index :: (Data a) => Int -> [Int] -> [Int] -> Zipper a -> ([Int], [Int])
index i is es (z :: Zipper a) =
maybe (is2,es2) (index (i + 1) is2 es2) (typeMoveFor 1 z)

where Just h = getHole z :: Maybe a
(is2 ,es2) = if terminalQ h then (is,i:es) else (i:is,es)

terminal@ :: (Data a) => a -> Bool
terminal@Q = null . nodeMapQ id

{- $Example
Suppose you have a datatype defined as

@

28



165

170

175

180

185

10

15

bitbreeder .gitignore

data E=A E E
| B String [E]
| C
deriving (Eq,Show, Typeable , Data)
Q@

and an expression defined as

@
e=A (ACC) (B \"abc\” [C,C])
@

The subexpressions of a @e@ are considered to be only the subvalues of
@Qe@ that are of the same type as @e@Q. Thus, the number of nodes of
expression @Qe@ is

>>> nodes e
5

because subvalues of node @BQ are of different type than expression
@e@ and therefore not considered as subexpressions.

Consequently , during a genetic programming run, subexpressions that
are of a different type than the expression itself , or subexpression
that cannot be reached from the root node by a type-preserving
traversal , cannot be chosen as crossover points nor can they be
mutated .

-}

16 .gitignore

*. hi

*.0

bitbreeder
bitbreeder_video
bitbreeder_audio
bitbreeder_judge
glyphs.ppm
glyphs.raw

a

v

o

.cabal -sandbox
cabal.sandbox. config
dist

dist —newstyle

29



10

15

20

25

30

35

bitbreeder

glyphs.png

17 glyphs.png

i !H<
01234S 6
,‘ - E
L4 - '__
6 DA
t
18 go.c

#include <limits.h>

static inline

v o-1))

{

static inline

S -1))

{

int safe_div(int a, int b) { if
return 0; } else { return a / b; } }
int safe_mod(int a, int b) { if ((b = 0)
return 0; } else { return a % b; } }

const char code[] = CODE;

float F(int t) { return

typedef struct {

int t;

int k;

float a[4]

float dc;
}S;

)

float go(S =s) {

s—>k 4+= 1;

if (s—>k = 6) {
s—>k = 0;

s>t 4= 1;

}

/*

—— http://en.wikipedia.org/wiki/Cubic_Hermite_spline#v

((b = 0)

(((T)&255)-128) /256.0f; }

(a
(a

INT_MIN && b =V

INT_MIN && b =v

& Interpolation_on_the_unit_interval_without_exact_derivatives

putStr

unlines

. map (show

[ -x"3 + 2%x"2 - x

, 3 %« x°3 -5 % x°2 4 2
, =3 x x"'3 4+ 4 x x"2 + x
, X783 - x"2

] | i< [0..5],

*/

const float c[6][4] =
{ {0.0,1.0,0.0,0.0}
, {-5.7870370370370364e-2,0.9375,0.13194444444444442,-1.1574074074074073e-2}

30

let x = i

. map (/2)) $

/ 6]

[



40

45

10

15

20

25

30

35

bitbreeder

gradient.ppm

b {
-
) {76
b {_3
-
) {71
b
float a = c¢[s—>k][0]
G c[s—=>k][3]
s—>dc =
return a — s->dc;

}

19 gradient.ppm

~7.407407407407407e 2
-2,0.77T77TTTTTTTTT7778,0.3333333333333333,-3.7037037037037035¢e -2}
.25e-2,0.5625,0.5625,-6.25e-2}
.7037037037037035¢
-2,0.33333333333333326,0.7777777777777777,-7.407407407407407e -2}
.157407407407407e-2,0.13194444444444442,0.9375,-5.787037037037035e-2}

* s—>a[0] + c[s—>k][1]

* s—>a[3];
s—>dc * 0.99 + 0.01 x a;

20 judge.c

#define _POSIX_.C_.SOURCE 1

#include

#include
#include
#include
#include
#include
#include
#include

#ifdef JUDGE_SOUNDFILE
#include <sndfile.h>

#else
#include
#endif

#include

#define wisdomfile ”/run/shm/bitbreeder. fftw”

static const double pi
static const double sr
blocksize 2048
overlap 4
BINS (blocksize / 2 + 1)

#define
#define
#define

<signal .h>

<math.h>
<stdio.h>
<stdlib .h>
<string .h>
<time.h>
<limits.h>
<stdlib .h>

<dlfcn . h>

<fftw3.h>

#define PARAMS 6

#define

LEVELS 11

= 3.141592653589793
= 8192.0;

* s—>a[l] + c[s—>k][2]

#define N (((1 << LEVELS) + overlap - 1) % blocksize / overlap)

struct audio {
int length;
float xdata;

}s

typedef float F_t(int);

* s—>a[2] +¢

31



40

45

50

55

60

65

70

75

80

85

90

bitbreeder

judge.c

struct audio xaudio(const char xname) {
struct audio *a = calloc (1, sizeof(xa));
a->length = N;
a—>data = calloc (a->length, sizeof(xa->data));
#ifdef JUDGE_SOUNDFILE
SF_INFO info; memset(&info, 0, sizeof(info));
SNDFILE xin = sf_open (name, SFMREAD, &info);
sf_readf_float (in, a->data, a->length);
sf_close (in);

#else
void xdl = dlopen (name, RTLDNOW) ;
F_t *cb;

x(void xx) (&cb) = dlsym(dl, 7F”);

float dc = ¢b(0);

for (int t = 0; t < a->length; ++t) {
float x = cb(t);
dc = dec * 0.99 + 0.01 * x;
a—>data[t] = x - dc;

dlclose (dl);
#endif
return a;

}

struct frame {
float loudness;
float spectrum [BINS];

}s

struct frames {
int current;
struct frame xframe;

s

struct frames sframes(struct audio =*a) {
struct frames *f = calloc (1, sizeof(xf));
f->current = 0;
f->frame = calloc (1 << LEVELS, sizeof (xf->frame));
float xibuf = fftwf_alloc-real (blocksize);
float xobuf = fftwf_alloc_-real (blocksize);
fftwf_import_wisdom_from _filename (wisdomfile) ;

fftwf_plan plan = fftwf_plan_r2r_1d (blocksize , ibuf, obuf, FFTWR2HC, v

 FFTWDESTROYINPUT | FFTW_EXHAUSTIVE) ;
fftwf_export_wisdom_to_filename (wisdomfile) ;

float xwindow = calloc (blocksize , sizeof (xwindow));
for (int t = 0; t < blocksize; ++t) {

window [t] = 0.5 - 0.5 * cos(t * 2 % pi / blocksize);
}

float rsqrtblocksize = 1 / sqrtf(blocksize);
for (int i = 0; i < 1 << LEVELS; ++i) {

int b =1 % blocksize / overlap;
double 1 = 0;
for (int t = 0; t < blocksize; ++t) {

float x = a->data[b + t];
ibuf[t] = window [t] * x;
]l 4= window [t] * x * x;

}

32



95

100

105

110

115

120

125

130

135

140

145

150

bitbreeder judge.c

f->frame[i].loudness = sqrt(l) % rsqrtblocksize;
fftwf_execute (plan);
f->frame[i].spectrum [0 ] = fabsf(obuf[0]) * rsqrtblocksize;
f->frame[i].spectrum [BINS-1] = fabsf(obuf|[blocksize /2]) * rsqrtblocksize;
for (int k = 1; k < BINS-1; ++k) {

float re = obuf[k];

float im = obuf[blocksize - k];
f->frame[i].spectrum [k] = sqrtf(re * re + im % im) * rsqrtblocksize;
}
}
return f;
}
enum {
p-loudness = 0,
p-tonality , // min(1l, (logl0 ml - 10 sum (logl0 a_k) / sum 1)/60)
p-centroid , // ml = sum ak f .k / sum a_k
p-deviation , // m2 =sum (f_.k - ml)"2 ak / sum a_k; s"2 = m2
p-skewness , // m3 =sum (f_k - ml)"3 ak / sum a_k; gl =m3 / s"3
p-kurtosis , // m4d = sum (f_k — ml)"4 ak / sum ak; g2 =md / s°4
};

struct statistic {
double s0, sl, s2;

}s

void statistic (double x, struct statistic xs) {

s—>s0 = 1;
s—>s1 = x;
S—>582 = X*X;

}

void wstatistic (double w, double x, struct statistic *s) {
if (isnan(w)) { w= 0; }
if (isnan(x)) { x = 0; }

s—>s0 = w;
s—>sl = wxx;
S—>82 = WxX*X;

}

void combine(struct statistic #*x, struct statistic =y, struct statistic *r) {
r->s0 = x->s0 + y->s0;
r->sl = x->sl1 + y->sl;
r->s2 = x—>s2 + y->s2;

}

double mean(struct statistic xs) {
if (! isnan(s->sl) && s->s0 > 0) {
return s->sl / s->s0;
}

return O0;

}

double stddev(struct statistic xs) {
double d = sqrt(s—>s0 % s—>s82 - s—>s1 % s->sl) / s—>s0;
if (! (d>=0)) {d=0; }

return d;

33



155

160

165

170

175

180

185

190

195

200

205

bitbreeder

judge.c

}

struct analysis {
struct statistic base;
struct statistic levels [LEVELS+1];

IE

void combines(int depth, struct analysis #x, struct analysis xy, struct
G oer) |
combine(&x->base , &y->base, &r—->base);
for (int level = 0; level < depth; ++level) {
combine(&x—>levels [level], &y—>levels[level], &r—>levels[level]);
}
statistic (stddev(&r->base), &r—>levels[depth]);

}

struct analyses {
struct analysis param [PARAMS];
I

void analyse(struct frames *f, struct analyses x*a) {
struct frame xs = &f->frame[f->current++];
statistic (s—>loudness, &a->param|[p_loudness]. base);

double s0 = 0, sl = 0, s2 =0,

s3 = 0, s4 = 0;
for (int k = 0; k < BINS; ++k) {

double x = s->spectrum [k];
double f =k *x 2.0 / blocksize;
sO0 4= x;

sl +=x * f;

}
if (! (s0 > 0)) { s0=1; }
double ml = s1 / s0;

for (int k = 0; k < BINS; ++k) {
double x = s->spectrum [k];
double f =k *x 2.0 / blocksize;
double y = f - ml;
S2 =X * y * y;
S3 =X * y *x y % y;
sd 4= X *x y x y *x y * y;
}
double m2 = s2 / s0;
double m3 = s3 / s0;
double m4 = s4 / s0;
/%
statistic (ml, &a—>param [p_centroid |.base);
statistic (sqrt (m2), &a->param [p_deviation |. base);
statistic(m3 / pow(m2, 1.5), &a—>param|p_skewness |.base);
statistic(m4 / pow(m2, 2), &a—>param|[p_kurtosis ].base);
*
/
double 1 = s—>loudness;
wstatistic (1, ml, &a—>param [p_centroid |.base);
wstatistic(l, sqrt(m2), &a->param [ p_deviation ]. base);
wstatistic (1, m3 / pow(m2, 1.5), &a—>param[p_skewness |.base);
wstatistic (1, md4d / pow(m2, 2), &a->param[p-kurtosis |.base);
}
{

34

analysisy



210

215

220

225

230

235

240

245

250

255

260

bitbreeder

judge.c

double sO = 0, s1 = 0, sL = 0;

for (int k = 0; k < BINS; ++k) {
double x = s->spectrum [k] + le-6;
sO += 1;
sl 4= x * x;
sL += log(x * x);

}

double tonality = 1 — exp(sL / s0) / (sl / s0);
if (! (0 < tonality)) { tonality = 0; }
if (! (1 > tonality)) { tonality = 1; }
/*
statistic (tonality , &a—>param|[p_tonality ]. base);
*/
wstatistic (s—>loudness, tonality , &a—->param[p_-tonality |. base);
}
}

void combiness(int depth, struct analyses xx, struct analyses xy, struct »

& analyses xr) {
for (int param = 0; param < PARAMS; ++4param) {

combines (depth, &x—>param [param], &y—>param [param], &r->param |[param]) ;
}

}

void recurse(struct frames =f, int depth, struct analyses =*a) {
if (depth) {
struct analyses x, y;
recurse (f, depth - 1, &x);
recurse (f, depth - 1, &y);
combiness (depth - 1, &x, &y, a);
1 else {

analyse (f, a);
}

}

struct result {
double average, variability , granularity;

}s

struct results {
struct result result [PARAMS];
double novelty;

}s

void judge(struct frames *f, struct results =r) {
struct analyses a;
recurse (f, LEVELS, &a);
for (int param = 0; param < PARAMS; ++param) {
r->result [param]. average = mean(&a.param [param | . base) ;
r->result [param]. variability = mean(&a.param[param].levels[0]);
struct statistic s, t;
wstatistic (0, 0, &t);
for (int level = 1; level < LEVELS; ++level) {
wstatistic (level , mean(&a.param|[param].levels[level]), &s);
combine(&s, &t, &t);
}

r->result [param]. granularity = mean(&t);

35



265

270

275

280

285

10

15

20

25

bitbreeder

live.c

}
}

const char xname = 0;

void fpe_handler (int s) {
(void) s;
fprintf(stderr, ”SIGFPE %s\n”, name);
exit (1);

}

int main(int argc, char xxargv) {
(void) argc;

name = argv [1];
struct sigaction act, old;
act.sa_handler = fpe_handler;

sigemptyset(&act.sa_mask);
sigaction (SIGFPE, &act, &old);
struct results r;

judge (frames (audio(argv[1])), &r);
r.novelty = atoi(argv[2]);
fwrite(&r, sizeof(r), 1, stdout);
sigaction (SIGFPE, &old, 0);
return O;

}

21 live.c

#define -GNUSOURCE
#include <stdio.h>
#include <stdlib .h>

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>

#include <dlfcn.h>
#include <jack/jack.h>

// per-sample callback implemented in go.so
typedef float callback(void x);

// default silent callback
static float deffunc(void xdata) {
return 0;

}

static struct {
jack_client_t =xclient;
jack_port_t =xout;
void xdata;
callback * volatile func;
} state;

// race mitigation
volatile int inprocesscb = 0;

36



30

35

40

45

50

55

60

65

70

75

80

bitbreeder

live.c

static int processcb(jack_nframes_t nframes, void =xarg) {
inprocesscb = 1; // race mitigation
jack_default_audio_sample_t xout = (jack_default_audio_sample_t *) v
& jack_port_get_buffer(state.out, nframes);
callback *f = state.func;
for (jack_nframes_t i = 0; i < nframes; ++i) {
out[i] = f(state.data);

}

inprocesscbh = 0; // race mitigation
return 0;

}

static void errorcb(const char xdesc) {
fprintf(stderr, "JACK error: %s\n”, desc);

}

static void shutdowncb(void xarg) {
exit (1);

}

static void atexitcb(void) {
jack_client_close (state.client);

}

int main(int argc, char xxargv) {
srand (time (0) ) ;
state.func = deffunc;
state.data = calloc (1, 1024 x 1024);
jack_set_error_function (errorch);
(!(state.client = jack_client_open(”live”, JackNoStartServer, 0))) {
fprintf(stderr, ”"jack server not running?\n”);
return 1;

if

}

atexit (atexitch);

jack_set_process_callback (state.client , processcb, 0);
jack_on_shutdown (state.client , shutdowncb, 0);

// mono processing

state.out = jack_port_register (state.client, ”"output_-17, v
& JACK DEFAULT_AUDIO.TYPE, JackPortIsOutput, 0);

if (jack.activate(state.client)) {

fprintf (stderr, ”cannot activate JACK client”);

return 1;

}

// mono recording
if (jack_connect(state.client, ”"live:output_-1”, "record:in_17)) {
fprintf(stderr, ”cannot connect to recorder\n”);

}

// stereo output
const char s*ports;

if

((ports = jack_get_ports(state.client , NULL, NULL, JackPortIsPhysical

& JackPortIsInput))) {

int

i = 0;

while (ports[i] && i < 2) {

if (jack_connect(state.client, jack_port_name(state.out), ports[i])) {

}

fprintf(stderr, ”cannot connect output port\n”);

7

37



85

90

95

100

105

110

10

15

bitbreeder Makefile

i+
}
free (ports);
}
void xold_dl =
void xnew_dl =
char *xsoname =
while (1 = scanf(”%ms”, &soname)) {
if ((new_dl = dlopen (soname, RTLDNOW))) {
callback *new_cb;
*(void *x) (&new_cb) = dlsym(new.dl, 7go”);
if (new_cb) {
// race mitigation: dlclose with jack running in .so —> boom
while (inprocessch) ;
state.func = new_cb;
if (old_dl) {
dlclose (old_dl);
}
old_dl = new._dl;
} else {
dlclose (new_dl);
new._dl = 0;

)

)

o O O

)

}
} else {
}

free (soname) ;
soname = 0;

}

return 0;

}
22 Makefile

all: bitbreeder bitbreeder_video bitbreeder_audio bitbreeder_judge glyphs.raw

clean:

rm —-f bitbreeder bitbreeder.o bitbreeder_video bitbreeder_video.o v
bitbreeder_video.hi bitbreeder_audio bitbreeder_judge bitbreeder.v
hi Database.o Database.hi Population.o Population.hi Expression.hiyv
Expression.o Evolve.hi Evolve.o Compile.hi Compile.o Video.hi »
Video.o Genetics.o Genetics.hi Metric.o Metric.hi Config.o Config. v
hi judge_sf debug glyphs.raw glyphs.ppm

222N

bitbreeder: bitbreeder.hs Database.hs Population.hs Expression.hs Evolve.hs v~
 Compile.hs Genetics.hs Metric.hs Config.hs .cabal-sandbox
cabal vl-exec —— ghc —-Wall —threaded -O2 bitbreeder.hs

bitbreeder_video: bitbreeder_video.hs Expression.hs Video.hs Config.hs .cabal-»
& sandbox
cabal vl-exec —— ghc -Wall —-threaded -O2 bitbreeder_video.hs

bitbreeder_audio: live.c
gcec —-std=c99 -Wall —-pedantic —Wextra —Wno-unused-parameter -0O3 -o v
 bitbreeder_audio live.c ‘pkg-config —--cflags —--libs jack‘ —-1dl -lm

bitbreeder_judge: judge.c
gcc —std=c99 -Wall —-pedantic —Wextra -O3 -ggdb -0 bitbreeder_judge judgev

38



20

25

10

15

20

25

30

35

bitbreeder Metric.hs

G .c —-lm -1fftw3f -1dl

judge_sf: judge.c
gcc —-std=c99 -Wall —-pedantic —Wextra -O3 -ggdb -o judge_sf judge.c -lm -
G 1fftw3f —-lsndfile -DJUDGE_SOUNDFILE

debug: debug.c
gcc —std=c99 -Wall —-pedantic —Wextra —Wno-unused -parameter —-03 -o debug »~
& debug.c -1dl1

glyphs.raw: glyphs.png
convert glyphs.png glyphs.ppm && tail -c 1572864 < glyphs.ppm > glyphs. v
L raw

.cabal -sandbox:
cabal vl-sandbox init
cabal vl-install cairo MonadRandom GLFW-b gtk OpenGLRaw process stm syb v~
& syz time vector —-reorder-goals

23 Metric.hs

{-# LANGUAGE ForeignFunctionInterface #-}
module Metric where

import Prelude hiding (read, replicate, sum, zip, zip3, zipWith, zipWith3)

import Control.Monad (when)
import Data. Vector.Unboxed
import qualified Data.Vector.Storable as S (thaw, unsafeFreeze)
import qualified Data.Vector.Storable.Mutable as S (unsafeWith)

import Foreign (allocaBytes, copyBytes)
import System.IO (Handle, hGetBuf)
import System.IO.Error (mkIOError, eofErrorType)

newtype Metric =M (Vector (Double, Double))
newtype Stats = S (Vector (Double, Double, Double))
newtype Analysis = A (Vector Double)

newtype Weight =W (Vector Double)

newtype Target = T (Vector Double)

type Score = Double

emptyMetric :: Metric

emptyMetric = M $ zip zero zero

emptyStats :: Stats

emptyStats = S $ zip3 zero zero zero
emptyAnalysis :: Analysis

emptyAnalysis = A zero

emptyWeight 11 Weight

emptyWeight = W zero

emptyTarget :: Target

emptyTarget = T zero

39



40

45

50

55

60

65

70

75

80

bitbreeder

Population.hs

zero :: Vector Double
zero = replicate elements 0
insert :: Analysis —> Stats -> Stats

insert (A as) (S ss) =S $ zipWith { as ss
where
f a(sO, sl, s2) = (s0 + 1, sl + a, s2 + a * a)

delete :: Analysis —> Stats —-> Stats
delete (A as) (S ss) =S $ zipWith f as ss
where
f a (s0, sl, s2) = (s0 - 1, s1 — a, s2 — a * a)

target :: Target —> Weight —> Stats —-> Metric
target (T ts) (W ws) (S ss) =M $ zipWith3 f ws ts ss
where
fwt (s0, sl, s2)

| isInfinite tt = (0, 0)
| isNaN tt = (0, 0)
| isInfinite ww = (0, 0)
| isNaN ww = (0, 0)
| otherwise = (tt, ww)
where
mean = sl / s0
stddev = sqrt (s0 % s2 — sl % sl) / s0

tt = mean + stddev * t
ww = w / stddev

score :: Metric —> Analysis —> Score
score (M ms) = \(A as) —> sum $ zipWith f ms as
where
f (¢, w) =\a > let d=w=x (a - t) in d = d

read :: Handle —> IO Analysis
read h = allocaBytes bytes $ \ptr —> do
bytes’ <- hGetBuf h ptr bytes

when (bytes /= bytes’) $ ioError (mkIOError eofErrorType ”” Nothing Nothing)

m <- S.thaw (convert zero)
S.unsafeWith m $ \q -> copyBytes q ptr bytes

(A . convert) ‘fmap‘ S.unsafeFreeze m
bytes, elements, measurements, parameters :: Int
bytes = elements * 8
elements = measurements * parameters + 1
measurements = 6
parameters = 3

24 Population.hs

module Population (Item (..), Population, empty, update,

import Database (DB)

import qualified Database as D

import Metric (Stats, Analysis, Target, Weight)
import qualified Metric as S

import Expression (E())

40

target , toAscList) where



10

15

20

25

30

35

40

10

15

bitbreeder README

data Item = Item{ itemID :: !Int, itemExpr :: E, itemMetric :: Analysis }
type Population = (DB Item, Stats, Target, Weight)

empty :: Population
empty = (D.empty, S.emptyStats, S.emptyTarget, S.emptyWeight)

insert :: Item —-> Population -> Population
insert it (d, s, t, w) = (D.insert it d, S.insert (itemMetric it) s, t, w)

toAscList :: Population —> [Item]
toAscList (d, -, -, _) = D.toAscList d
prune :: Int -> Population —-> Population
prune n p@Q(d, s, t, w) = case fmap D.toAscList $ D.splitAt n d of
(-, [1) —>mp
(keep, discard) -> (keep, foldr S.delete s $ map itemMetric discard, t, w)
{-
foldr S.insert S.emptyStats . map itemMetric . D.toAscList $ k, t, w)
let (keep, discard) = D.splitAt n d
in (keep, . D.toAscList $ discard, t, w)
-}
sort :: Population -> Population
sort (d, s, t, w) = (D.sortOn (S.score (S.target t w s) . itemMetric) d, s, t, wv
S )
update :: Item -> Population —> Population
update it = prune maxPopCount . insert it
target :: Target —> Weight —> Population -> Population
target t w (d, s, -, _) = sort (d, s, t, w)
maxPopCount :: Int

maxPopCount = 1024

25 README

BitBreeder

BitBreeder evolves noisy expressions.

Build Requirements

BitBreeder is written in Haskell and C. You need GHC (tested with ghc-7.6.2)
and (at least) these libraries from Hackage (or elsewhere):

cairo gtk gtkglext MonadRandom OpenGLRaw process stm syb syz time vector
You need GCC (tested with gcc-4.7.2) and (at least) these libraries:
m dl jack fftw3f

You need ImageMagick for PNG to PPM conversion.

41



20

25

30

35

40

45

50

55

60

65

70

75

bitbreeder README

You need Make to build it all.

Runtime Requirements

You need JACK (running at 48000Hz), GCC (BitBreeder generates source code and
compiles it) and ecasound (for recording). After running you can encode a
video, which needs recent versions of avprobe and avconv (tested with 1.0.5
for Debian Wheezy from deb-multimedia repository , older versions like stock
Wheezy will cause problems).

qjackctl & # set up JACK and start jackd; stop the transport and rewind it
for CPU in 0 1 2 3 ... ; do sudo cpufreq-set —-c ${CPU} -g performance ; done
./start .sh

./ encode.sh a/SESSION

mplayer a/SESSION.mkv

The main BitBreeder window has a bunch of sliders. FEach row corresponds to
an audio descriptor, the left slider is the normalized target value and the
right slider is the weighting. The other window displays the currently
sounding expression , which is the fittest expression matching the current
tab. You can create more tabs, each with their own fitness target/weights.
BitBreeder cross-breeds and mutates the expression populations from each tab.

Targets are normalized: the center of the slider range is the mean of the
population, and the extremes of the slider range are +/- a few standard
deviations of the population. Weighting is from 0 at the left increasing
to the right, changing a target will have no effect when its weight is 0.
When all weights are zero each newly generated expression is deemed the
fittest .

Implementation

BitBreeder consists of a few programs: user interface and control logic
(bitbreeder), the visualisation of the expression (bitbreeder_video),
live audio generation (bitbreeder_audio), and expression audio analysis
(bitbreeder_judge).

bitbreeder

FIXME cross—-breeding , mutation, populations, compilation
bitbreeder_judge

The judge loads an .so containing the compiled expression, and generates

42



80

85

90

95

100

105

110

115

120

125

130

bitbreeder

README

a couple of minutes of audio with it. The main loop is a tree structure:

recursion depth
: /
2\
/\
L/\ A\

0/\/\/\/\/
01234567.. audio frames

Each audio frame is an FFT spectrum and RMS volume for that block (which
are windowed and overlapped).

At the lowest level of the tree the basic instantaneous descriptors are
calculated (tonality , spectral centroid, etc...), each stored as a
statistic (weight, weight * value, weight % value”2) with the weight
usually based on the RMS volume.

Each subsequent level combines statistics from all the previous levels —
each node (for each basic descriptor) combines pairwise two lists of
statistics (ordered by level) and adds a new statistic as the mean of
the level below it.

Example (assuming weight is 1):

—> input descriptor sequence

[ AN NN |

—> base level
1 7 49
14 16
15 25
11 1

—> next level
2 11 98
2 6 36

-> top level
4 17 134 2 8 39.25 1 4 16

—> final results
mean(0) = 17/4 = 4.25
stddev (0) = sqrt(4 = 134 - 17°2) / 4 = 3.929
stddev (1) = sqrt(2 * 39.25 - 87°2) / 2 = 1.936
stddev (2) = sqrt(l = 16 — 472) / 1 =0

5 30.25

1 5.
13 9

granularity = centroid of stddev(level)
= (0 %« 3.929 + 1 % 1.936 +2 % 0) / (0 + 1 + 2)
= 0.64549
-> output

mean(0), stddev(0), granularity

bitbreeder_audio

The main loop watches stdin for names of an .so containing a compiled
expression. For each line, it loads the .so and swaps the JACK process

43



135

140

145

150

155

10

15

20

25

bitbreeder spectrogram.c

callback to the new expression (taking care not to unload code that is
currently running).

FIXME sample rate conversion, DC offset removal

bitbreeder_video

The main loop watches stdin for expressions in Haskell ’s Show syntax.
For each line, it parses the expression, lays it out as a tree, and
displays it.

FIXME glyph map, textureQueryLod

Copyright (C) 2013 Claude Heiland-Allen <claude@mathr.co.uk>
License: GPLv3+
Warranty : NONE

https://mathr.co.uk

26 spectrogram.c

#include <math.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sndfile.h>
#include <fftw3.h>

#define wisdomfile ”/run/shm/bitbreeder. fftw”

static const double pi = 3.141592653589793;
static const double sr = 8192.0;

static const int bs = 2048;

static const int ol = 4;

struct audio {
int channels;
int frames;
float =*xdata;

s

static struct audio xaudio_load (const char =*filename) {
struct audio xaudio = calloc (1, sizeof(xaudio));
if (! audio) {
return 0;
}
SF_INFO info; memset(&info, 0, sizeof(info));
SNDFILE *in = sf_open(filename, SFM_READ, &info);

44



30

35

40

45

50

55

60

65

70

75

80

bitbreeder spectrogram.c

}

if (! in) {
free (audio);
return O;
}
audio—>channels = info.channels;
audio->frames = info.frames;
audio->data = calloc (audio->channels % audio—>frames, sizeof(xaudio—>data));

if (! audio->data) {
sf_close (in);
free (audio);
return 0;

sf_readf_float (in, audio—>data, audio->frames);
sf_close (in);
return audio;

struct fft {

}s

float *window;
float *in;

float *out;
float xibuf;
float *obuf;
fftwf_plan plan;

static struct fft xfft_init () {

}

struct fft =fft = calloc(1l, sizeof (xfft));
if (! fft) {
return 0;
}
fft —>window = calloc (bs, sizeof (xfft —>window));
fft —>in = calloc(bs, sizeof (xf{ft->in));
fft —>out = calloc(bs, sizeof (xfft->out));
fft —>ibuf = fftwf_alloc_real (bs);
fft —>obuf = fftwf_alloc_real (bs);
for (int t = 0; t < bs; ++t) {
fft —>window [t] = 0.5 - 0.5 % cos(t * 2 % pi / bs);
}
fftwf_import_wisdom_from_filename (wisdomfile);
fft —>plan = fftwf_plan_r2r_1d (bs, fft-—>ibuf, fft->obuf, FFTWR2HC, v
& FFTW.DESTROYINPUT | FFTW_EXHAUSTIVE) ;
fftwf_export_wisdom_to_filename (wisdomfile) ;
return fft;

static void fft_compute(struct fft =fft) {

for (int k = 0; k < bs; ++k) {
fft =>ibuf[k] = fft —>window [k] * fft-—>in[k];
}
fftwf_execute (fft -—>plan);
fft =>out [0] = fft —>obuf[0] % f{ft —>obuf[0] / sqrtf(bs);
fft —>out [bs /2] = fft -—>obuf[bs/2] * fft -—>obuf[bs/2] / sqrtf(bs);
for (int k = 1; k < bs/2; ++k) {
float re = fft —>obuf[k];
float im = fft —>obuf[bs - k];
fft —>out [k] = sqrtf(re * re + im * im) / sqrtf(bs);

45



85

90

95

100

105

110

115

120

125

130

135

bitbreeder spectrogram.c

}
}

struct plane {
int width;
int height;
float xdata;

}s

struct planes {
int count;
struct plane xplane;

b
static void planes_copy (float #src, int count, struct planes xplanes, int p, intv
Sox) |
for (int i = 0; i < count; ++i) {
planes->plane[p]. data[planes—>plane[p]. width * i + x] = src[i];

}
}

static void audio_copy (float =xdst, int count, struct audio *xaudio, int t0, int cv
) A
int t = t0;
for (int i = 0; i < count; ++i) {
if (0 <=t & t < audio->frames) {

dst [1i] audio—>data [t * audio->channels + c];
1 else {
dst[i] = 0;
}
+H
}
}
static struct planes xplanes_init(struct audio xaudio, struct fft *xfft, int »
& count) {

struct planes splanes = calloc(l, sizeof(xplanes)); // FIXME cleanup
planes->count = count;
planes—>plane = calloc (planes—>count, sizeof (xplanes—>plane)); // FIXME v
& cleanup
int i = 0;
// for (int i = 0; i < planes—>count; ++i) {
// fprintf(stderr, "%d\n”, i);
double frames = 2 % bs + audio—->frames;
planes—>plane[i].width = ceil (frames % ol / bs);
planes—>plane[i]. height = bs;
planes—>plane[i].data = calloc(planes—>plane[i].width % planes—>plane[i].V
si

& height , zeof (¥ planes—>plane[i].data)); // FIXME cleanup
int x = 0;
for (int t = -bs; t < bs + audio->frames; t += bs / ol) {

for (int ¢ = 0; ¢ < audio—>channels; ++c) {
audio_copy (fft —>in, bs, audio, t, c¢);
fft _compute ({ft);
planes_copy (fft —>out, bs, planes, i, x);

++x;

}

46



bitbreeder spectrogram.c

// struct audio xaudio2 = audio_-downsample (audio);
// free (audio);
// audio = audio2;

140 /) }

return planes;

}

struct image {
145 int width;
int height;
unsigned char xdata;

s

150 static struct image ximage_init(int frames) {
struct image ximage = calloc (1, sizeof(ximage));
if (! image) {

return 0;
}

155 image—->height = 128;
double dframes = frames;
image->width = ceil (dframes % ol / bs);
image->data = calloc (1, image-—>width % image—>height);
if (! image—>data) {
160 free (image) ;
return 0;
}

return image;

}

165
static void image_write(struct image *image, const char xfilename) {
FILE sout = fopen (filename , ”"wb”);
if (out) {
fprintf (out, "P5\n%d %d\n255\n”, image->width, image->height);
170 fwrite (image—>data, image->width * image->height, 1, out);

fclose (out);

}
}

175 static double planes_lookup (struct planes xplanes, double fO, double fl1, double v
G t0) {
double y0 = f0 / sr = planes—>plane[0]. height;
double yl = f1 / sr % planes—>plane [0]. height;
int v0 = floor (y0);

int vl = ceil(yl);
180 double z = 0;
double t = t0;
double x = ol % t / bs;
int u = floor (x);
int k = 0;
185 for (int v = v0; v < vl; ++v) {
if (0 <= u && u < planes->plane [0]. width && 0 <= v && v < planes—>plane [0].
& height) {
z += planes—>plane [0]. data[planes—>plane [0]. width * v 4+ u];
k += 1;

190

47



195

200

205

210

215

220

225

230

bitbreeder start.sh

return z / k;

}

static void compute(struct planes xplanes, struct image ximage) {

unsigned char xdata = image—>data;
for (int y = 0; y < image->height; ++y) {
double f0 = (pow(2, (y - image—>height) % 1.0 / image->height) - 0.5) x v
& Sr;
double fl1 = (pow(2, (y + 1 — image->height) % 1.0 / image->height) - 0.5) % »
& sr;

for (int x = 0; x < image—>width; ++x) {
double t = (x * bs) / ol + (ol - 1) % bs/ol;
double v = planes_lookup (planes, f0, fl1, t);
unsigned char g = fmin(fmax (255 * v, 0), 255);
xrdatat+ = g;

}

}
}

int main(int argc, char xxargv) {
if (arge < 3) {

return 1;
}
int retval = 1;
struct audio *audio = audio_load (argv[1]);

if (audio) {
struct fft «fft = fft_init ();

if (fft) {
int frames = audio->frames;
struct planes splanes = planes_init (audio, fft, 1);
if (planes) {
struct image *image = image_init (frames);

if (image) {
compute (planes, image);
image_write (image, argv[2]);

retval = 0;
// image_free (image) ;
}
// planes_free (planes);
}
// fft_free (fft);

}
}

return retval;

}
27 start.sh

#!/bin/bash

# sudo cpufreq-set —-c 0 -g performance

# sudo cpufreq-set —c 1 —g performance
ulimit -s unlimited

rm -rf o

rm —f v

make

SESSION="bitbreeder -$ (date -u +YF-%HAMLS)”
mkdir -p o a 7a/${SESSION}”

48



10

15

10

15

20

25

30

35

40

45

bitbreeder Statistics.hs

In -s ”a/${SESSION}/” v

ecasound —-q -G:jack ,record —-f:f32,1,48000 -i:jack -o "a/${SESSION}.wav’ &
sleep 5

time ./bitbreeder +RTS -N 2>”7a/${SESSION}.err” >"a/${SESSION}.out”

sleep 5

kill %ecasound

echo ”./encode.sh \”a/${SESSION}\””

28 Statistics.hs

type R = Double
data Stat = Stat !R !R IR
Stat s0 sl s2 <> Stat t0 t1 t2 = Stat (s0 4+ t0) (sl 4+ t1) (s2 + t2)

stat :: R -> Stat
stat x = Stat 1 x (xxx)

mean :: Stat -> R
mean (Stat s0 sl _) = sl / s0

stddev :: Stat -> R
stddev (Stat sO0 sl s2)
| t >0=t
| otherwise = 0

where t = sqrt (s0 % s2 - sl % sl) / s0O
type Stats = (Stat, [Stat])
merge :: Stats —> Stats —> Stats

merge (s, ss) (t, ts) = (r, stat (mean r) : zipWith (<>) ss ts)
where 1 = s <> ¢

pairwise f (a:b:cs) = f a b : pairwise f cs
pairwise - _ = [ ]
granularity :: [R] —> R
granularity
= sum . zipWith (%) [0..] . map stddev
reverse . snd . head . last . takeWhile (not . null)
iterate (pairwise merge) . map (\x —> (stat x, []))

go :: (R-—>R) > 10 ()
go f = print $ granularity [ f ¢t | t <- [1 .. 2716] ]

main :: IO ()

main = do
go (\t —=> sin (t / 10))
go (\t —> sin (t / 1000))
go (\t => sin (t / 10) + 10 % sin (t / 1000))
go (\t => sin (10 / (t + 1)))
{_

6.305600061502868
43.442727416334165
434.64767794388223

49



10

15

20

25

30

35

40

bitbreeder stroke.frag

0.5956135757335486
-}

29 stroke.frag

void main() {
gl_FragColor = vec4 (1.0, 0.7, 0.7, 1.0);

}
30 Video.hs

module Video (setupGL, draw, pngFilename, captureToPNG) where

import Data.Maybe (mapMaybe)
import Data.List (intercalate, transpose)
import Foreign (allocaBytes, nullPtr, peek, peekArray, plusPtr, with, withArray)
import Foreign.C (peekCStringLen, withCString)
import System.IO (hPutStrLn, stderr, hGetBuf, withBinaryFile, IOMode(ReadMode) )
import Graphics.Rendering. Cairo (Format(FormatRGB24), formatStrideForWidth, v
& surfaceWriteToPNG, withImageSurfaceForData)
import Graphics.GL

import Config (videoW, videoH)
import Expression

type Glyph Char

data Layout = Layout [Glyph] (Int, Int) [Layout]

layout :: E —> Layout

layout X = Layout ”t” (1, 1) []

layout (I i) = Layout s (length s, 1) [] where s = show i

layout (U u e) = Layout s (w ‘max‘ length s, h + 1) [1]
where

s = glyphsU u
l@(Layout - (w, h) _) = layout e
layout (B b e f) = Layout s (ew + fw + 1, (eh ‘max‘ fh) + 1) [el, fl]
where
s = glyphsB b

el@(Layout _ (ew, eh) _) = layout e
fl@ (Layout - (fw, fh) _) = layout f
layout (T e f g) = Layout 77:” (ew + fw + gw + 2, (eh ‘max‘ fh ‘max‘ gh) + 1) [»
G oel, fl, gl]
where

el@(Layout - (ew, eh) _) = layout e
fl@ (Layout _ (fw, fh) _) = layout f
gl@(Layout - (gw, gh) -) = layout g

type Position = (Float, Float)
type Edge = (Position, Position)

layoutEdges :: Layout —-> (Position, [Edge])
layoutEdges (Layout _ (w, -) []) = ((fromIntegral w / 2, 0.5), [])
layoutEdges (Layout gs _ [l@(Layout - - _)]) = (t, (t, (tx, ty + 1)) : map »
& translate es)
where

t = (fromIntegral (length gs) / 2, 0.5)

50



45

50

55

60

65

70

75

80

85

90

bitbreeder Video.hs

((tx, ty), es) = layoutEdges 1
translate ((x0, y0), (x1, yl)) = ((x0, yO + 1), (x1, yl + 1))

layoutEdges (Layout gs _ [l@(Layout _ (lw, _) _), r]) = (t, (t, (Ix, ly + 1)) : »
G (t, (rx + fromIntegral lw + 1, ry + 1)) : map translateL ls ++ map v
 translateR rs)

where

t = (fromIntegral lw + fromIntegral (length gs) / 2, 0.5)
((1x, ly), 1s) = layoutEdges 1
((rx, ry), rs) = layoutEdges r
translatelL ((x0, y0), (x1, yl)) =

((x0, yO + 1), (x1, yl + 1))
translateR ((x0, y0), (x1, yl)) = g
(

(
(x0 + fromIntegral 1w + 1, y0O 4+ 1), (x1 +»
& fromlIntegral lw + 1, yl + 1))
layoutEdges (Layout gs _ [l@(Layout
(t, (t, (Ix, ly + 1))
(t, (mx + fromIntegral lw + 1, my + 1))
(t, (rx + fromIntegral lw + 1 + fromIntegral mw + 1, ry + 1))
map translatel ls ++ map translateM ms ++ map translateR rs)
where
t = (fromIntegral lw + fromIntegral (length gs) / 2, 0.5)
((1x, ly), 1s) = layoutEdges 1
((mx, my), ms) = layoutEdges m
((rx, ry), rs) = layoutEdges r
translatel. ((x0, y0), (x1, yl1)) = ((x0, y0O + 1), (x1, yl 4+ 1))
translateM ((x0, y0), (x1, yl)) = ((x0 + fromIntegral lw + 1, y0 + 1), (x1 +v
& fromlIntegral lw + 1, yl + 1))
translateR ((x0, y0), (x1, yl)) = ((x0 + fromIntegral lw + 1 + fromIntegral »
Gmw+ 1, yO + 1), (x1 + fromIntegral lw + 1 + fromIntegral mw + 1, yl 4+~
¢ 1)

lw, -) -), m@(Layout - (mw, -) -), r]) =

glyphsU :: U -> [Glyph]
glyphsU Neg = "-7
glyphsU LNot = ”!”
glyphsU BNot = 777

glyphsB :: B -> [Glyph]
glyphsB Add = 7+”
glyphsB Sub = 7-”
glyphsB Mul = "«”
glyphsB Div = 7 /”
glyphsB Mod = "%”
glyphsB BAnd = 7&”
glyphsB LAnd = 7&&”
glyphsB BOr = 7 |”
glyphsB LOr = 7 ||”
glyphsB XOr = 77
glyphsB ShL = "<<”
glyphsB ShR = 7">>”
glyphsB Lt = "<”
glyphsB Gt = 7>”

pretty :: Layout —> [[(Glyph, Float)]]
pretty 1@(Layout _ (w, h) _) = map (([space] ++).(++ [space])) $ [replicate w v
 space] ++ fst (pretty’ h 1 [0..]) 4++ [replicate w space]| where space = (7 v

& ’7 _1)
pretty’ :: Int —> Layout —> [Float] —-> ([[(Glyph, Float)]], [Float])
pretty’ [] = error ”pretty’”

pretty * h (Layout s (w, _) 1ls) (c:cs) = (take h (take w (replicate x space ++ (¥

o1



95

100

105

110

115

120

125

130

135

140

bitbreeder Video.hs

& zip s (repeat c)) ++ repeat space) : combine [space]| gs 4++ repeat (v
 replicate w space)), cs’)

where
(gs, cs’) = maps (pretty’ (h - 1)) cs 1Is
space = (7 7, ¢)
x = case ls of
(Layout - (w’, -) _):_:o —> w’
- >0
maps :: (Layout —> [Float] —> ([[(Glyph, Float)]], [Float])) -> [Float] —> [~
& Layout] -> ([[[(Glyph, Float)]]], [Float])
maps _ cs [ = ([], cs)
maps p cs (l:1ls) =
let (g, ¢cs’) =p 1 cs
(gs, ¢s’’) = maps p cs’ Is
in (g:gs, cs’’)
combine :: [(Glyph, Float)] —> [[[(Glyph, Float)]]] —> [[(Glyph, Float)]]
combine space = map (intercalate space) . transpose
glyphMap :: [(Glyph, [Float])]
glyphMap = [ (g, [x/8, y/4]) | (gs, y) <= [701234567", "89-"I+x/" "% " &|<>7", " v
Gt 7] ‘zipt [0..], (g, x) <- gs ‘zip‘ [0..] ]
uploadGlyphs :: [[(Glyph, Float)]] —> IO (Int, Int)

uploadGlyphs gss@(gs:_) = do
let w = length gs
h = length gss
xyzs = concat . mapMaybe (\(g, z) -> fmap (++[z]) $ g ‘lookup‘ glyphMap) .v
& concat $ gss
withArray xyzs $ glTexImage2D GLTEXTURERECTANGLE 0 (fromIntegral GL.RGB32F) v
& (fromlIntegral w) (fromIntegral h) 0 GLRGB GLFLOAT
return (w, h)
uploadGlyphs _ = return (0, 0)

toTexture :: Layout —-> IO (Int, Int)
toTexture = uploadGlyphs . pretty

setupGL :: 10 (GLuint, GLuint)
setupGL = do
[t0O, t1] <- withArray [0,0] $ \p —> glGenTextures 2 p >> peekArray 2 p
glActiveTexture GL.TEXTUREIL
glBindTexture GL.TEXTUREZ2D t1
let width = 1024
height = 512
bytes = width * height * 3
withBinaryFile ”glyphs.raw” ReadMode $ \h —> allocaBytes bytes $ \p —> do
_ <— hGetBuf h p bytes
glTexImage2D GLTEXTURE2D 0 (fromIntegral GLRGB) (fromlIntegral width) (v
& fromIntegral height) 0 GLRGB GL_.UNSIGNED BYTE p
glGenerateMipmap GL.TEXTURE_2D
glTexParameteri GL.TEXTURE2D GL.TEXTUREMINFILTER (fromIntegral »
 GL_LINEAR_MIPMAP_LINEAR)
glTexParameteri GL.TEXTURE2D GL.TEXTUREMAGFILTER (fromIntegral GL_LINEAR)
glTexParameteri GL.TEXTURE2D GL.TEXTURE.WRAPS (fromIntegral GL.CLAMP.TO_EDGEy
“)
glTexParameteri GL.TEXTURE 2D GL.TEXTURE-WRAP.T (fromIntegral GL.CLAMP_.TO_EDGEv

52



145

150

155

160

165

170

175

180

185

190

bitbreeder

Video.hs

S )
glActiveTexture GL.TEXTUREO
glBindTexture GLTEXTURERECTANGLE t0
glTexParameteri GLTEXTURERECTANGLE GL.TEXTUREMINFILTER (fromIntegral v

. GLNEAREST)
glTexParameteri GLTEXTURERECTANGLE GL.TEXTURE MAGFILTER (fromIntegral v

 GLNEAREST)

glTexParameteri GLTEXTURERECTANGLE GL.TEXTURE.WRAPS (fromIntegral v

 GL.CLAMP_TO_EDGE)

glTexParameteri GLTEXTURERECTANGLE GL.TEXTURE WRAP.T (fromIntegral v

 GL.CLAMP_TO_EDGE)
prog <- glCreateProgram

frag <- glCreateShader GLFRAGMENT_SHADER

src <— readFile "expr.frag”

withCString src § \p -> with p $ \pp —> glShaderSource frag 1 pp nullPtr

glCompileShader frag
hPutStrLn stderr =<< shaderLog frag
glAttachShader prog frag
glLinkProgram prog

hPutStrLn stderr =<< programlLog prog
glUseProgram prog
withCString ”glyphs” $ \s -> glGetUniformLocation prog s >>= \1 —> glUniformliv

o

withCString ”expression” $ \s —> glGetUniformLocation prog s >>= \l -> ¢

1

1

& glUniformli 1 0
prog2 <- glCreateProgram

frag2 <- glCreateShader GLFRAGMENT SHADER

src2 <- readFile ”stroke.frag”
withCString src2 $ \p -> with p $ \pp —> glShaderSource frag2 1 pp nullPtr
glCompileShader frag2
hPutStrLn stderr =<< shaderLog frag2
glAttachShader prog2 frag2
glLinkProgram prog2

hPutStrLn stderr =<< programLog prog2
return (prog, prog2)

draw

let
w0
hO
x0
x1
y0
vyl
if 9 x
then

(GLuint, GLuint) -> E -> 10 ()
draw (prog, prog2) e = do
let 1 = layout e
(-, es) = layoutEdges 1

(w, h’) <- toTexture 1
h

1.5 % fromIntegral h’

32« h /9

9 % fromIntegral w / 32

negate (w0 — fromlIntegral w) / 2

x0 4+ w0
negate (hO - h) / 2
y0 + hO

fromIntegral w > 32 % h

do

glDisable GLBLEND
glUseProgram prog
quad (0, fromIntegral w)
glEnable GLBLEND

glBlendFunc GLDST.COLOR GLZERO -- multiplicative

glUseProgram prog?2
glBegin GL-QUADS

(yl, y0)

53



195

200

205

210

215

220

225

230

235

240

245

bitbreeder Video.hs

mapM. (edge (0, fromIntegral w) (yl, y0)) es
glEnd
else do
glDisable GLBLEND
glUseProgram prog
quad (x0, x1) (hx1.5, 0)
glEnable GL_BLEND
glBlendFunc GLDST.COLOR GLZERO —-- multiplicative
glUseProgram prog?2
glBegin GL.QUADS
mapM_ (edge (x0, x1) (hx1.5, 0)) es
glEnd
where
v vx vy tx ty = glTexCoord2f tx ty >> glVertex2f vx vy
quad (x0, x1) (y0, yl) = do
glBegin GL.QUADS
v (-1) (-1) x0 yO
v (-1) 1 x0 yl

v 1 1 x1 yl
v 1 (-1) x1 yo0
glEnd
edge (x0, x1) (y0, yl1) ((u0, v0), (ul, vl)) = do
let p0 = ( u0+1 -x0) / (x1 - x0) = 2 -1
q0 = ((v0O+1)x1.5 - y0) / (y1 - y0) = 2 - 1
pl = ( ul+l -x0) / (x1 - x0) = 2 -1
ql = ((v1+1)x1.5 - y0) / (y1 - y0) * 2 - 1

dp’ = pl - p0
dq’ = ql - q0

d = sqrt (dp’ * dp’ + dq’ * dq’) * (x1 - x0)
dp =2 % 0.09 = (dq’) / d
dg =2 % 0.32 % (-dp’) / d

v (p0 - dp) (q0 - dq) 0 0O

v (p0 + dp) (q0 + dq) 0 1

v (pl +dp) (ql + dq) 11

v (pl - dp) (ql - dq) 1 0

programLog :: GLuint -> IO String

programlLog prog = do
1 <- with 0 $§ \p —> glGetProgramiv prog GLINFOLOGLENGTH p >> peek p
allocaBytes (fromIntegral 1) $ \p —> with 0 $ \q —> do
glGetProgramInfoLog prog (fromlIntegral 1) q p
m <- peek q
peekCStringLen (p, fromIntegral m)

shaderLog :: GLuint —> IO String
shaderLog prog = do
1 <- with 0 $ \p —> glGetShaderiv prog GLINFOLOGLENGTH p >> peek p
allocaBytes (fromIntegral 1) $ \p —> with 0 $§ \q —> do
glGetShaderInfoLog prog (fromlIntegral 1) g p
m <- peek q
peekCStringLen (p, fromIntegral m)

pngFilename :: Int -> String
pngFilename n = ”./v/” 4+ (reverse . take 8 . (++ repeat ’'0’) . reverse . show) v
S n _~_|_ 77.png77

captureToPNG :: String -> 10 ()

54



bitbreeder Video.hs

captureToPNG f = do
let stride = formatStrideForWidth FormatRGB24 videoW
allocaBytes (videoH * stride) $ \p —> do
250 glPixelStorei GLPACKROWLENGTH (fromIntegral $ stride ‘div‘ 4)
glReadPixels 0 0 (fromIntegral videoW) (fromIntegral videoH) GLBGRA v
& GL_UNSIGNED BYTE p
glPixelStorei GLPACKROWLENGTH 0
let ¢ = p ‘plusPtr‘ ((videoH - 1) % stride)
withImageSurfaceForData q FormatRGB24 videoW videoH (-stride) $ \s —-> do
255 surfaceWriteToPNG s f

%)



