butterflies

Claude Heiland-Allen

2013-2019

10

Contents

1 butterflies.cabal 2
2 data/butterfly.png 4
3 data/palette.png 4
4 flat/diagram.hs 4
5 flat/Mainhs . . . o Lo 5
6 Geometry/Class.hs 9
7 Geometry/Flat/ThreeD/Space.hs o 10
8 Geometry/Flat/TwoD/Space.hs 11
9 Geometry/Flat/TwoD/Tessellation/Triangular.hs 11
10 Geometry/Hyperbolic/TwoD /HalfSpace.hs o . 13
11 Geometry/Utils.hs 15
12 .gitignore. 15
13 hyperbolic/Colour.hs 15
14 hyperbolic/Fuzz.hs L 16
15 hyperbolic/HalfPlane.hs L 17
16 hyperbolic/Main.hs 20
17 hyperbolic/Tesselate.hs oL 23
18 hyperbolic/Trapezium.hs L 24
19 hyperbolic/Triangle.hs oL 25
20 LICENSE 25
21 NEWS . . 37
22 OpenGLRaw2l.patch 37
23 README 38
24 Setup.his . .. 38

1 Dbutterflies.cabal

name :
version:
synopsis:
description:
homepage :
license:
license —file:
author:
maintainer :
copyright:

& .co.uk>

butterflies
0.3.0.2
butterfly tilings

various tilings with butterflies (after M C Escher 1950)
https://code.mathr.co.uk/butterflies

GPL-3

LICENSE

Claude Heiland-Allen
claude@mathr.co.uk

(C) 2013,2015,2018,2019

category: Graphics
build -type: Simple
cabal-version: >=1.8

Claude Heiland -Allen <claude@mathr

15

20

25

30

35

40

45

50

butterflies

butterflies.cabal

extra-source—-files: README
data—dir: data

data—-files:
butterfly .png
palette .png

library
exposed —modules :
Geometry . Class

Geometry . Flat . ThreeD . Space

Geometry . Flat . TwoD.

Geometry . Flat . TwoD.

Geometry . Hyperbolic

Geometry. Utils
build —depends:

base >=4.6 & <4.14

executable butterflies —
hs—source—-dirs:
main—1is :
other —modules:
Paths_butterflies
build —~depends:
base ,

Space
Tessellation. Triangular
.TwoD. HalfSpace

flat
flat
Main . hs

bytestring >=0.10 && <0.11,

OpenGLRaw >=3.3 &&
GLUT >=2.7 && <2.8,

<3.4,

gl-capture >=0.1 & <0.2,

repa >=3.4 && <3.5,

repa—devil >=0.3 & <0.4,

butterflies

source—repository head

type:
location:

source—repository this
type:
location:
tag:

git

https://code.mathr.co.uk/butterflies .

git

https://code.mathr.co.uk/butterflies.

v0.3.0.2

git

git

butterflies data/butterfly.png

2 data/butterfly.png

3 data/palette.png

4 flat/diagram.hs

import Diagrams.Prelude
import Diagrams.Backend. Cairo.CmdLine (Cairo, defaultMain)

import Control.Monad (forM.)
import System.Environment (withArgs)

main :: IO ()
main = do
forM_ [2 .. 5] $ \s —> forM_ [0 .. s ‘div‘ 2] $§ \q —> do
let p=3s - q
n=p=*p+4qgx*xqg+px*gdq

withArgs ["-0”, "colouring-" 4++ (if n < 10 then 70" else ””) 44 show n ++ ~
& 7-” ++ show p + ”-" ++ show q ++ ”.png”] $
defaultMain (diagram p q)
diagram :: Integer -> Integer —> QDiagram Cairo R2 Any
diagram p q = dia
where
n=p=x*xp-+qx*qg-+Dp*q
i=p ‘ged’ q
i =n ‘div‘ i
o=nhead [o7 | o7 <= [0 j = 1], (p+q) ‘mod¢ j = (o’ * i % (q ‘div‘ »

193]
|

w

[\

t = s * sqrt 3 / 2

25

30

35

40

45

50

55

butterflies flat/Main.hs

x = -100

y = -50

w = 200

h = 100

pt u v =p2 (s x (fromInteger u + fromInteger v / 2), t % fromInteger v)

rt uwv=r2 (s *x (fromInteger u + fromInteger v / 2), t * fromInteger v)
triangle u v a b = close $§ fromVertices [pt u v, pt (u+ b) (v + a), pt (¥

G u-a) (v+b+4+a)l]
grid = mconcat [triangle (u - z) v 1 0 | v <- [y .. y+ h], let z = (v + ¢

G 1) ‘divt 2, u <- [x .. x + w]
pargram u v = translate (r2(-3xs/4, -t/2)) $ close $ fromVertices [pt u vy
G, pt (u+j) v, pt (u+7j) (v+1i), pt u (v +1i)]
isV.u v = local u v (0, 0)
local u v =
let d =1 % (v ‘div‘ i)
in ((u+ o0 % d) ‘mod‘ j, v ‘mod‘ i)
border uv d =
let xx = strutX (uv * s)
yy = strutY (uv * t)
in Dbeside (r2 (0,-1)) (beside (r2(0,1)) (beside (r2(-1,0)) (beside (r2v
X
)

G (1,0)) d xx) xx) yy) yy

(uu, vv) = local 1 (-1
pp =1 - uu

qq = -1 - vv

dia0 = mconcat

[stroke (fromVertices [pt 0 0, pt (-p) 0, pt (-(p + q)) q]) # lc black v
& # lw 3 # border 5

, stroke (triangle 0 0 p q) # fc red # opacity 0.5 # border 5

, stroke (pargram pp qq) # fc blue # opacity 0.5 # border 5

]

dia = mconcat

[mconcat [stroke (translate (rt u v) $ circle (s / 4)) # lc black # lwv

G 1| v [y .. y+h], u<-[x .. x+w], isV uv |

, mconcat [translate (rt u v) $ circle (s / 4) | u<- [pp .. pp +] - 1¥
S], v<=[aqq .. qq + 1 - 1]] # fc yellow

, dia0

, mconcat [stroke (triangle u v p q) # lc red #1lw 1 | v<- [y .. v+ ¢
G h], u<-[x .. x+w], isV uv]

, mconcat [stroke (pargram u v) # lc blue #lw 1 | v<- [y .. v+~
G h], u<-[x .. x +w], isV uv]

, stroke grid # lc green # lw 1
rect (s * fromIntegral w) (t * fromIntegral h) # fc white
] # withEnvelope dia0 # centerXY # withEnvelope (rect 1024 576 ‘asTypeOfv
G ¢ dia)

5 flat/Main.hs

{-# LANGUAGE TypeSynonymlnstances #-}
module Main (main) where

import Control.Monad (when)

import Foreign (Ptr, nullPtr, castPtr, plusPtr, advancePtr, allocaBytes, with, »
& withArray, peek, poke, pokeByteOff)

import Foreign.C (CUChar)

import Foreign.C.String (withCString, peekCString)

import Foreign.ForeignPtr (withForeignPtr)

import System.Exit (exitSuccess)

10

15

20

25

30

35

40

45

50

55

60

65

butterflies flat/Main.hs

import Graphics.GL

import Graphics.Rendering.OpenGL. Capture (capturePPM)

import Graphics.UI.GLUT (getArgsAndInitialize, createWindow, displayCallback, ($v
=), swapBuffers, reportErrors, mainLoop)

import qualified Data.ByteString as BS

import Data.Array.Repa.lO.DevIL (runlL, readlmage, Image(RGBA))

import Data.Array.Repa.Repr. ForeignPtr (toForeignPtr)

import Paths_butterflies (getDataFileName)

import Geometry.Flat.TwoD. Space
import Geometry.Flat.TwoD. Tessellation . Triangular

swarm’ p q = tessellate p q 3 (Point (-12) (-12)) (Point 12 12)

class GLPoke t where glPoke :: t —> Ptr t —> IO (Ptr t)
instance GLPoke t => GLPoke [t] where
glPoke [] p = return p

glPoke (x:xs) p = glPoke x (castPtr p) >>= glPoke xs . castPtr

instance GLPoke GLfloat where glPoke x p = poke p x >> return (advancePtr p 1)
instance GLPoke Double where
glPoke x p = do
p <- glPoke (realToFrac x :: GLfloat) (castPtr p)
return (castPtr p)
instance GLPoke Point where
glPoke (Point x y) p = do
p <- glPoke x (castPtr p)
p <- glPoke y p
return (castPtr p)
instance GLPoke Vertex where
glPoke (Vertex vp vt hO hl h2) p = do
p <- glPoke [vp, vt] (castPtr p)
p <- glPoke [hO, hl, h2] (castPtr p)
return (castPtr p)
instance GLPoke a => GLPoke (Triangle a) where
glPoke (Triangle a b ¢) p = do
p <- glPoke [a,b,c] (castPtr p)
return (castPtr p)

vert = unlines

["#version 1207

, 7uniform mat4d mvp;”
, 7attribute vec2 p0;”
, 7attribute vec2 t0;”
, 7attribute vec3 c0;”
, 7varying vec2 t;”

, "varying vec3 c¢;”

, "void main() {7

”

, gl_Position = vecd(vec2(vecd(p0, 0.0, 1.0) * mvp), 0.0, 1.0);”

9 — el
, 7t o= t0;”
9 _ Rl
, c = c0;
” ”
7}
frag = unlines

70

75

80

85

90

95

100

105

110

115

120

butterflies

flat/Main.hs

["#version 1207

, 7uniform sampler2D tex;”
, 7uniform samplerlD pal;”
, "varying vec2 t;”

, "varying vec3 c;”

, "const float phil = (sqrt(5.0) - 1.0) / 2.0;”

, "const float phi2 = (sqrt(5.0) - 2.0) / 2.0;”

, "vecd colour(float i) {”

, 7 float j = 1.0/6.0 — phil * i;”

, 7 float k = phi2 % i;”

7§ == floor(j);”

, 7 k -= floor (k);”

, 7k x= -0.5;7

L7 k4= 1.0

, 7 return vec4d(texturelD(pal, j).rgb *x k, 1.0);”

” })7

, "void main() {7

, vecd w = texture2D (tex, t);”

, 7 vecd f = vecd (0.0);”

, 7 if (w.a <= 0. 5) {r

7 f = vec4(, 0.5, 0.5, 1.0)y

, 7 }else (wr>:05&&wg>—05&&wb>—05)
, 7 :vec4(1()7 1.0, 1.0, 1.0)3

, 7} else f (w.r <= 0.5 & w.g <— 0.5 & w.b <= 0.5)
o :vmuoo,oo,oo,lm

, 7} else {7

, 7 float k = 0.0;”

, 7 if (w.r >= 0.5) {”

, k=c.ry”

, 7 } else if (w.g >= 0.5) {”
; k =c.g;”

, } else if (w.b >= 0.5) {”
, 7 k = ¢.b;”

’ 7 }77

, f = colour(k);”

) 7 }”

, gl_FragColor = f;”

main = do

(-, [sp, sq]) <- getArgsAndInitialize
_ < createWindow " butterflies”
program <- compileProgram
glUseProgram program
loadTextures
let ip = read sp

iq = read sq

swarm = swarm’ ip iq

count = length swarm = 3
stride =4 x (2 + 2 + 3)

bytes = count * fromlIntegral stride

allocaBytes bytes $ \p —> do
glPoke swarm p
vbo <- with 0 $ \q —> glGenBuffers 1 q >> peek q
glBindBuffer GL.ARRAY BUFFER vbo

{73
{77

glBufferData GLARRAYBUFFER (fromIntegral bytes) p GLSTATICDRAW

butterflies flat/Main.hs

att <— withCString ”p0” $ glGetAttribLocation program
glVertexAttribPointer (fromIntegral att) 2 GLFLOAT (fromlIntegral GL.FALSE) v
& stride (plusPtr nullPtr 0)
125 glEnableVertexAttribArray (fromIntegral att)
att <- withCString "t0” $ glGetAttribLocation program
glVertexAttribPointer (fromIntegral att) 2 GLFLOAT (fromlIntegral GL.FALSE) v
& stride (plusPtr nullPtr (2 % 4))
glEnableVertexAttribArray (fromIntegral att)
att <- withCString "c¢0” $ glGetAttribLocation program
130 glVertexAttribPointer (fromIntegral att) 3 GLFLOAT (fromlIntegral GL.FALSE) v
& stride (plusPtr nullPtr (4 % 4))
glEnableVertexAttribArray (fromIntegral att)

let s = 10

1 = -s

135 t = —-s

b =3

n= -1

f =1
ortho =2/ (r =1), 0, 0, =(r +1) / (r = 1)
140 , 0,2/ (¢t -b), 0, =(t +b) / (t - b)
,0,0,2/(f-mn), =(f+mn)/ (f-mn)

0, 0, 0, 1]

withArray ortho $ \p —> do
loc <- withCString "mvp” $ glGetUniformLocation program
145 glUniformMatrix4fv loc 1 (fromIntegral GLFALSE) p
loc <- withCString "tex” $ glGetUniformLocation program
glUniformli loc 0
loc <- withCString ”"pal” $ glGetUniformLocation program
glUniformli loc 1
150 glClearColor 0.5 0.5 0.5 1
displayCallback $= do
glClear GL_.COLOR_BUFFER_BIT
glDrawArrays GL.TRIANGLES 0 (fromIntegral count)

swapBuffers
155 let ipq = ip * ip + iq * iq + ip * iq
capturePPM >>= BS.writeFile (” tessellation -” ++ (if ipq < 10 then ”0” else v
S 7”) ++ show ipq ++ 7-" ++ show ip ++ ”-” 4+ show iq ++ ”.ppm”)

reportErrors
exitSuccess
mainLoop
160
loadTextures = do
RGBA img <- getDataFileName ”butterfly .png” >>= runIL . readlmage
withForeignPtr (toForeignPtr img) $ \p —> do
tex <— with 0 $ \q —> glGenTextures 1 q >> peek q
165 glBindTexture GL.TEXTURE2D tex
glTexImage2D GL.TEXTURE2D 0 (fromIntegral GLRGBA) 1024 1024 0 GLRGBA v
 GL_UNSIGNED_ BYTE p
glTexParameteri GL.TEXTURE2D GL.TEXTUREMINFILTER (fromIntegral »
 GL_LINEAR MIPMAP_LINEAR)
glTexParameteri GL.TEXTURE2D GL.TEXTUREMAGFILTER (fromIntegral GL.LINEAR)
glGenerateMipmap GL.TEXTURE_ 2D
170 glActiveTexture GL.TEXTUREIL
RGBA img <- getDataFileName ”palette.png” >>= runllL . readlmage
withForeignPtr (toForeignPtr img) $ \p —> do
tex <- with 0 $§ \q —> glGenTextures 1 q >> peek q

175

180

185

190

195

200

205

210

butterflies Geometry/Class.hs

glBindTexture GL.TEXTURE_1ID tex

glTexImagelD GL.TEXTURE.ID 0 (fromIntegral GLRGBA) 256 0 GLRGBA v
 GL_UNSIGNED BYTE p

glTexParameteri GL.TEXTURE_ID GL.TEXTUREMINFILTER (fromIntegral GLINEARESTv

S)
glTexParameteri GL.TEXTURE_1ID GL.TEXTUREMAGFILTER (fromIntegral GLNEARESTY
S
compileProgram = do

program <- glCreateProgram

compileShader program GL.VERTEX SHADER vert
compileShader program GLFRAGMENT SHADER frag
glLinkProgram program

debugProgram program

return program

compileShader program t src = do
shader <- glCreateShader t
withCString src $ \srcp -> with srcp $ \srcpp -> glShaderSource shader 1 srcppv
& nullPtr
glCompileShader shader
glAttachShader program shader
debugShader shader
glDeleteShader shader

debugProgram program = do
if program /= 0
then do
linked <- with 0 $ \p —> glGetProgramiv program GL_LINK_STATUS p >> peek p
when (linked /= fromIntegral GL.TRUE) $ putStrLn ”link failed”
len <- with 0 $ \p —> glGetProgramiv program GLINFOLOGLENGTH p >> peek v
S p
when (len > 1) $ do
allocaBytes (fromIntegral len + 1) $ \p —> glGetProgramInfoLog program v
& len nullPtr p >> pokeByteOff p (fromIntegral len) (0 :: CUChar) >>v
& peekCString p >>= putStrLn
else putStrLn "no program”

debugShader shader = do
if shader /=0
then do
compiled <- with 0 § \p -> glGetShaderiv shader GL.COMPILE.SSTATUS p >> v
& peek p
when (compiled /= fromIntegral GL.TRUE) $ putStrLn ”compile failed”
len <- with 0 $ \p —> glGetShaderiv shader GLINFOLOGLENGTH p >> peek p
when (len > 1) $ do
allocaBytes (fromIntegral len + 1) $§ \p —> glGetShaderInfoLog shader lenv
& nullPtr p >> pokeByteOff p (fromIntegral len) (0 :: CUChar) >> v
& peekCString p >>= putStrLn
else putStrLn ”"no shader”

6 Geometry/Class.hs

{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies #-}
module Geometry. Class where

class Geometry point geodesic | point —> geodesic, geodesic —> point where

butterflies Geometry/Flat/ThreeD/Space.hs

distance :: point —> point -> Double

angle :: point -> point —-> point —> Double
geodesic :: point -> point -> geodesic

rotate :: Double —> point -> point —-> point
translate :: Double —> geodesic —-> point —-> point
midpoint :: point -> point —-> point

midpoint p q = translate (distance p q / 2) (geodesic p q) p

class Embedding model point where
embed :: point —> model
model :: model -> Maybe point

7 Geometry/Flat/ThreeD /Space.hs

{-# LANGUAGE MultiParamTypeClasses #-}
module Geometry. Flat . ThreeD . Space

(Point (..)

, Geodesic (..)

) where

import Geometry. Class
import qualified Geometry. Flat.TwoD.Space as E

data Point = Point{ pX, pY, pZ :: !Double } deriving Show
data Geodesic = Geodesic{ gO :: !Point, gX, gY, gZ :: !Double } deriving Show

instance Geometry Point Geodesic where

distance (Point u v w) (Point x y z) =

let dx = x - u
dy =y - v
dz =z - w
in sqrt (dx % dx + dy * dy + dz x dz)
angle - _ _ = error ”"Geometry.Flat.ThreeD.Space.angle”

geodesic p@(Point u v w) (Point x y z) =

let dx = x — u
dy =y - v
dz =z - w

d = sqrt (dx % dx + dy * dy + dz = dz)
in Geodesic p (dx / d) (dy / d) (dz / d)

rotate _ _ = error " Geometry.Flat.ThreeD.Space.rotate”

translate d (Geodesic _ dx dy dz) (Point x y z) =
Point (x +d % dx) (y +d % dy) (z + d * dz)

midpoint (Point u v w) (Point x y z) =
Point (0.5 % (u + x)) (0.5 * (v +y)) (0.5 x (w+ z))
instance Embedding Point Point where
embed = id

model = Just

instance Embedding Point E.Point where
embed (E.Point x y) = Point x y 0

10

45

10

15

20

25

30

35

40

45

butterflies Geometry/Flat/TwoD/Space.hs

model (Point x y z)
| z =0 = Just (E.Point x y)
| otherwise = Nothing

8 Geometry/Flat/TwoD /Space.hs

{-# LANGUAGE MultiParamTypeClasses #-}
module Geometry. Flat.TwoD. Space

(Point (..)

, Geodesic (..)

) where

import Geometry. Class
import Geometry. Utils (fixAngle)

data Point = Point{ pX, pY :: !Double } deriving Show
data Geodesic = Geodesic{ gO :: !Point, gX, gY :: !Double } deriving Show

instance Geometry Point Geodesic where

distance (Point u v) (Point x y) =
let dx = x — u
dy =y - v
in sqrt (dx % dx + dy * dy)

angle (Point p q) (Point u v) (Point x y) =
let du = u - p
dv =v - q
dx = x - p
dy =y - ¢q
uv = atan2 dv du

xy = atan2 dy dx
in fixAngle (xy - uv)

geodesic p@(Point u v) (Point x y) =
let dx = x - u
dy =y - v
d = sqrt (dx % dx + dy * dy)
in Geodesic p (dx / d) (dy / d)

rotate a (Point u v) (Point x y) =

let co = cos a
si = sin a
P=Xx-u
q=y -V

in Point (u+ co * p - si * q) (v 4+ si * p+ co * q)
translate d (Geodesic - dx dy) (Point x y) = Point (x + d * dx) (y + d = dy)
midpoint (Point u v) (Point x y) = Point (0.5 % (u + x)) (0.5 * (v +y))
instance Embedding Point Point where

embed = id
model = Just

9 Geometry/Flat/TwoD /Tessellation/Triangular.hs

11

10

15

20

25

30

35

40

45

50

55

butterflies

Geometry/Flat/TwoD /Tessellation/Triangular.hs

module Geometry.Flat.TwoD. Tessellation . Triangular

(tessellate

, Triangle (..)
, Vertex (..)

) where

import Geometry. Flat.TwoD. Space
data Triangle a =

data Vertex = Vertex{ vPos, vTex
deriving Show

tessellate
tessellate p q s (Point Ix ly)

let t = s % sqrt 3 / 2
y = floor (ly / t)
x = floor (lx / s)
w = ceiling ((hx - 1x) / s)
h = ceiling ((hy - ly) / t)
g = grid p g
pc u v =

& fromlIntegral v), g u v)
b (p0@(Point x0 y0), hO)
let pTL = p0

! Point ,

= (Point (s x (fromIntegral u + fromIntegral v / 2))

(Point x1 yl, hl)

Triangle a a a deriving Show

vSpots, vWings, vBody !Double }

Int —> Int —> Double —> Point —> Point —> [Triangle Vertex]
(Point hx hy) =

(t = ¢

(Point x2 y2, h2) =

12

pIM = Point ((2 * x0 + x1) / 3) ((2 %= y0O + yl) / 3)
pTR = Point ((x0 + 2 % x1) / 3) ((y0 + 2 * yl) / 3)
pBL = Point ((2 * x0 + x2) / 3) ((2 * y0 + y2) / 3)
pBR = Point ((x0 + x1 + x2) / 3) ((y0 + y1 + y2) / 3)
tTL = Point 0 1
tTM = Point 0.5 1
tTR = Point 1 1
tBL = Point 0.25 0
tBR = Point 0.75 0
v pp tt = Vertex pp tt hO h2 hl
vIL = v pTL tTL
vIM = v pIM tTM
vIR = v pTR tTR
VBL = v pBL tBL
vBR = v pBR tBR
in [Triangle vIL vIM vBL

, Triangle vIM vIR vBR
, Triangle vBL vIM vBR
]
bs v0 vl v2 =
b v0 vl v2
b vl v2 v0
b v2 v0 vl

concat

= concat
u v) (pe (ut1) v) (pe u (v+1))
¢ (utl) v) (pc (u+l) (v+1))

(pc u (v+1))

butterflies Geometry/Hyperbolic/ TwoD /HalfSpace.hs

,u<— [x .. x + w]
]
grid :: Int -> Int -> Int -> Int —-> Double
grid p q =
let n=p *x p+q*xq+p *xq
i=p ‘ged’ q
j =mn ‘div‘ i
o=nhead [0 | 0o <— [0 .. j - 1], (p+ q) ‘mod* j = (0o’ x i x (q ‘div‘ »
G 1)) ‘mod j]
in \x y —>

let d =1 % (y ‘div‘ i)
in fromIntegral (((x + o * d) ‘mod‘ j) + j * (y ‘mod‘ i))

10 Geometry/Hyperbolic/TwoD /HalfSpace.hs

{-# LANGUAGE MultiParamTypeClasses #-}
module Geometry. Hyperbolic.TwoD. HalfSpace
(Point (..)
, Geodesic (..)
) where

import Data.Fixed (mod’)

import Geometry. Class
import qualified Geometry.Flat.TwoD.Space as E

data Point = Point{ pX, pY :: !Double } deriving Show
data Geodesic

= Line{ gDir :: !Bool, gCX :: !Double }

| Arc { gDir :: !Bool, gCX :: !Double, gR :: !Double }

deriving Show

instance Geometry Point Geodesic where

distance p q = case geodesic p q of
Line{} -> abs (log (pY p / pY q))
g@Arc{} —>
let a=gCX g - gR g
b=gCX g+ gR g
pa = sqrt ((pX p — a) * (pX p - a) + pY p = pY p)
pb = sqrt ((pPX p - b) x (pX p — b) + pY p * pY p)
qa = sqrt ((pX q — a) * (pPX g - a) + pY q * pY q)
gb = sqrt ((pX g - b) * (pX g - b) +pY q * pY q)
in abs (log ((pa / pb) / (qa / gb)))
angle _ _ _ = error "Geometry. Hyperbolic.TwoD. HalfPlane . angle”

geodesic p q
| abs (pX p - pX q) <
Line{ gCX = 0.
| otherwise =
let ¢cx = 0.5 * (pX q * pX q +pY q * pY q - pX p * pX p - pY p * pY p) /¥
- (pX q - pX p)
r = sqrt ((pX p - ¢x) * (pX p - ¢x) + pY p * pY p)
in Arc{ gCX = ¢x, gDir = pX p<pX q, gR=71 }

eps =
5 % (pX p 4+ pX q), gDir =pY p <pY q }

13

45

50

55

60

65

70

75

80

85

90

95

butterflies

Geometry/Hyperbolic/ TwoD /HalfSpace.hs

rotate a p q =
let g = geodesic p q
b = angleAt g p
h = fromPointAngle p (b + a)
d = distance p q
in translate d h p

translate d g p = atDist g p (abs d)

instance Embedding Point Point where
embed = id
model = Just

instance Embedding E.Point Point where
embed (Point x y) = E.Point x y
model (E.Point x y)
| vy >0 = Just (Point x y)
| otherwise = Nothing

eps :: Double
eps = le-12
atParam :: Geodesic —> Double —> Point

atParam gQ@QLine{} t = Point (gCX g) t
atParam g@Arc {} t = Point (gR g * cos

paramAt :: Geodesic —> Point -> Double
paramAt Line{} p = pY p
paramAt g@QArc {} p = pi - atan2 (pY p)

(d >= 0)

(pi - t) +gCX g)

(pX p - gCX g)

angleAt :: Geodesic —> Point —> Double

angleAt g@Line{} _ = (if gDir g then (subtract pi)

angleAt g@QArc {} p = (if gDir g then (pi +) else id)
O)+ pi/2)

fromPointAngle :: Point —> Double —> Geodesic

fromPointAngle p a
| abs ((a ‘mod’‘ pi) - pi/2) < eps =

Line{ gCX = pX p, gDir = cos a >= 0 }

| otherwise =
let b =a + pi/2
co = cos b
si = sin b

r = abs (pY p / si)

cx = —-(pY p *x co - pX p x si) / si
in Arc{ gCX = cx, gDir = cos a>= 0, gR =1 }

atDist :: Geodesic —> Point -> Double -> Bool -> Point

atDist g@Line{} p d dir

| dir /= gDir g = binarySearch g p d
| otherwise = binarySearch g p d
where pp = paramAt g p

atDist g@Arc {} p d dir
| dir /= gDir g = binarySearch g p d
| otherwise = binarySearch g p d

where pp = paramAt g p

14

(gR g * sin t)

else id) (pi/2)
(atan2 (pY p)

(pX p - gCX gv

100

105

10

10

15

butterflies

Geometry/Utils.hs

binarySearch :: Geodesic —> Point -> Double -> Double -> Double —> (Double -> v

 Double —> Bool) -> Point
binarySearch g p d lo0 hi0 cmp = go lo0 hi0
where
go lo hi =
let mid = 0.5 % (lo + hi)
q = atParam g mid
m = distance p q
in if hi - lo < eps
then q
else if m ‘cmp‘ d
then go lo mid
else go mid hi

11 Geometry/Utils.hs

module Geometry. Utils
(fixAngle
) where

import Data.Fixed (mod’)

fixAngle :: Double —> Double
fixAngle a =
let b =a ‘mod”‘ (2 % pi)
in if b > pi then b - 2 % pi else b

12 .gitignore

.cabal -sandbox
cabal.sandbox. config
dist

* . ppm

13 hyperbolic/Colour.hs

module Colour
(colour
) where

import Control.Monad (liftM2)
import Data.List (partition)
import Data.Maybe (fromMaybe, listToMaybe)

import HalfPlane
import Trapezium
import Fuzz as F

)

p’, q9’, hyp, adj, opp, dO, dl :: Double
p7

)

=7
q’ =3

hyp = acosh ((cos (pi/p’) * cos (pi/q’)) / (sin (pi/p’) * sin (pi/q’)))

adj = acosh (cos (pi/q’) / sin (pi/p’))
opp = acosh (cos (pi/p’) / sin (pi/q’))
d0 = 2 % hyp + 2 % adj + 2 * opp

15

20

25

30

35

40

45

50

55

60

10

butterflies

hyperbolic/Fuzz.hs

dl = 2 % acosh (cos (pi / 7) / sin (pi / 14))

vertices

vertices

colour
colour

colour

= zip [0..23]

map (F.fromList

[Trapezium] —> [(Int, Fuzz Point)]

(equivalent 0))

concatMap (equivalenceClassesBy (equivalent dl))
equivalenceClassesBy (equivalent dO0)

map snd
F.toList

F.fromList (equivalent 0)
1iftM2 ($) [bTL, bFR, bFL]

)

where
¢TL = go bTL
cFL = go bFL
cFR = go bFR

[(Int, Fuzz Point)] -> Trapezium -> Trapezium
" fs t = t{ bSpots = ¢TL, bWings = cFL, bBody = cFR }

go k = fromMaybe 12 § listToMaybe [¢ | (¢, f) <= fs, k t ‘F.elem*®

colour ts = let fs =

equivalent

[Trapezium] -> [Trapezium]

vertices ts in map (colour’ fs)

Double —> Point —> Point —> Bool

equivalent d p q = abs ((p ‘dist‘ q) - d) < le-3

equivalenceClasses
equivalenceClasses =

equivalenceClassesBy

Eq a = [a] > [[a]]
equivalenceClassesBy (==)

ts

(a => a -=> Bool) —> [a] —> [[a]]

equivalenceClassesBy eq zs = go [] [] zs
where
go cs [] [] = cs
go [] [] (x:xs) = go [[x]] [] xs
go c¢s (o:o0s) [] = go ([o]:cs) [] os
go (c:cs) os is = let f i = any (‘eq‘ 1) ¢
(is ’,0s’) = partition f is
in if null is’

then go (c:cs) (os’ ++ os)
else go ((is’ 4+ ¢) : cs)
error ”"equivalenceClassesBy

14 hyperbolic/Fuzz.hs

module Fuzz

16

(Fuzz()

, empty

, size

, insert

, lookup

, elem

, delete

, toList

, fromList
) where

(]
[] (os’ ++ os)
invariant violated”

]

15

20

25

30

35

40

45

50

55

60

butterflies

hyperbolic/HalfPlane.hs

import Prelude hiding (elem, lookup)
import Data.List (foldl’, partition)
import Data.Maybe (isJust , listToMaybe)

data Fuzz a = Fuzz
{ _size :: Integer
, -insert :: a -> (Integer, Fuzz a)
, -lookup :: Integer —-> Maybe a
, _elem :: a —> Bool
, -delete :: a -> Fuzz a
, -toList :: [(Integer, a)]
}
empty :: (a -> a —> Bool) -> Fuzz a

empty eq = fuzz eq 0 0 []

fromList :: (a —=> a —=> Bool) -> [a] -> Fuzz a
fromList eq = foldl’ (\f a -> snd (insert f a)) (empty eq)

size :: Fuzz a —> Integer
size = _size
insert :: Fuzz a —> a -> (Integer, Fuzz a)
insert = _insert
lookup :: Fuzz a —> Integer —> Maybe a
lookup = _lookup
elem :: a -> Fuzz a —> Bool
elem = flip _elem
delete :: Fuzz a -> a -> Fuzz a
delete = _delete
toList :: Fuzz a —> [(Integer, a)]
toList = _toList
fuzz :: (a —> a —> Bool) —> Integer —> Integer —-> [(Integer, a)] —> Fuzz a
fuzz eq next count xs = Fuzz
{ _size = count

, _-insert = \x -> case listToMaybe (filter (eq x . snd) xs) of

Nothing -> (next, fuzz eq (next + 1) (count + 1) ((next, x) xs))
Just (n, _) —> (n, fuzz eq next count xs)
, -lookup = \n -> case listToMaybe (filter ((== n) . fst) xs) of
Nothing -> Nothing
Just (-, x) —> Just x
, -elem = \x —> isJust $ listToMaybe (filter (eq x . snd) xs)
, -delete = \x —> let (ys, zs) = partition (eq x . snd) xs
in fuzz eq next (count - tolnteger (length ys)) zs

, -toList = xs

15 hyperbolic/HalfPlane.hs

module HalfPlane
(Point (..)
, eDist

17

10

15

20

25

30

35

40

45

50

55

60

butterflies hyperbolic/HalfPlane.hs

, dist

, Geodesic (..)

, fromPoints

, fromPointAngle
, atDist

, angleAt

, rotateAbout

, midpoint

, eMidpoint

) where

import Data.Fixed (mod’)

eps :: Double
eps = le-12

data Point
= Point{ pX, pY :: !Double }
deriving Show

eDist :: Point -> Point —-> Double
eDist p q =
let dx = pX p - pX g
dy =pY p - pY ¢q
in sqrt (dx * dx + dy =* dy)

dist :: Point -> Point -> Double
dist p q = case fromPoints p q of

Line{} -> abs (log (pY p / pY q))
g@Arc{} —>

let a =gCX g - gR g
b=gCX g+ gR g
pa = sqrt ((pX p - a) = (pX p — a) + pY p * pY p)
pb = sqrt ((pX p - b) = (pX p — b) + pY p * pY p)
qa = sqrt ((pX q - a) * (pPX q - a) + pY q * pY q)
gb = sqrt ((pX g - b) = (pX g - b) + pY q * pY q)
in abs (log ((pa / pb) / (qa / gb)))
data Geodesic
= Line{ gDir :: !Bool, gCX :: !Double }
| Arc { gDir :: !Bool, gCX :: !Double, gR :: !Double }
deriving Show
atParam :: Geodesic —> Double -> Point

atParam g@Line{} t = Point (gCX g) t
atParam gQ@Arc {} t = Point (gR g * cos (pi - t) + gCX g) (gR g * sin t)

paramAt :: Geodesic —> Point —> Double
paramAt Line{} p = pY p
paramAt gQArc {} p = pi - atan2 (pY p) (pX p - gCX g)

fromPoints :: Point -> Point -> Geodesic
fromPoints p q
| abs (pX p - pX q) <
Line{ gCX = 0.
| otherwise =

eps =
5 % (pX p 4+ pX q), gDir =pY p <pY q }

let ¢cx =05 x« (pX q * pXq+pY q*pY q-pXps*pXp-pYps=*pYp)/ (¥

18

butterflies hyperbolic/HalfPlane.hs

& pX q - pX p)
r = sqrt ((pX p - ¢cx) * (pX p - ¢cx) + pY p * pY p)
in Arc{ gCX = ¢cx, gDir =pX p<pXq, gR=71 }

fromPointAngle :: Point —> Double —> Geodesic
65 fromPointAngle p a
| abs ((a ‘mod’‘ pi) - pi/2) < eps =
Line{ gCX = pX p, gDir = cos a >= 0 }
| otherwise =
let b =a + pi/2

70 co = cos b
si = sin b
r = abs (pY p / si)
cx = —-(pY p x co — pX p % si) / si
in Arc{ gCX = cx, gDir = cos a>= 0, gR =71 }
75
atDist :: Geodesic —> Point -> Double —> Bool —> Point
atDist g@Line{} p d dir
| dir /= gDir g = binarySearch g p d (0 + eps) pp (<)
| otherwise = binarySearch g p d pp (pp * 100) (>)
80 where pp = paramAt g p
atDist g@QArc {} p d dir
| dir /= gDir g = binarySearch g p d (0 + eps) pp (<)
| otherwise = binarySearch g p d pp (pi - eps) (>)
where pp = paramAt g p
85
binarySearch :: Geodesic —> Point -> Double -> Double -> Double -> (Double —> v
& Double —> Bool) —> Point
binarySearch g p d lo hi cmp =
let mid = 0.5 % (lo + hi)
q = atParam g mid
90 m = dist p q
in if hi - lo < eps
then q
else if m ‘cmp‘ d
then binarySearch g p d lo mid cmp
95 else binarySearch g p d mid hi cmp
angleAt :: Geodesic —> Point —> Double
angleAt g@QLine{} _ = (if gDir g then (subtract pi) else id) (pi/2)
angleAt g@Arc {} p = (if gDir g then (pi +) else id) (atan2 (pY p) (pX p - gCX gv
G)+ pi/2)
100
rotateAbout :: Point —> Double —> Point —> Point

rotateAbout p a q =
let g = fromPoints p q
b = angleAt g p
105 h = fromPointAngle p (b + a)
d = dist p q
in atDist h p d True

midpoint :: Point —> Point -> Point
110 midpoint p q = atDist (fromPoints p q) p (0.5 * dist p q) True

eMidpoint :: Point -> Point —> Point
eMidpoint p q = Point (0.5 * (pX p + pX q)) (0.5 % (pY p + pY q))

19

10

15

20

25

30

35

40

45

50

butterflies hyperbolic/Main.hs

16 hyperbolic/Main.hs

{-# LANGUAGE TypeSynonymlInstances #-}
module Main (main) where

import Control.Monad (when)

import Foreign hiding (rotate)

import Foreign.C (CUChar)

import Foreign.C.String

import Foreign.ForeignPtr (withForeignPtr)

import Graphics.Rendering.OpenGL.Raw

import Graphics.UI.GLUT hiding (rotate, translate, compileShader, RGBA, Triangle v
& , Point)

import Data.Array.Repa.IO.DevIL

import Data.Array.Repa.Repr.ForeignPtr

import Paths_butterflies (getDataFileName)

import HalfPlane (Point(Point))

import Trapezium (toTriangles, neighbours, trapezium)
import Tesselate (tesselate)

import Colour (colour)

import Triangle (Triangle(Triangle), subtriangles)

swarm :: [Triangle]
swarm = concatMap subtriangles . concatMap toTriangles . colour $ tesselate (¥
& Point (-2) 0.01) (Point 2 4)

class GLPoke t where glPoke :: t -> Ptr t —> IO (Ptr t)
instance GLPoke t => GLPoke [t] where
glPoke [] p = return p
glPoke (x:xs) p = glPoke x (castPtr p) >>= glPoke xs . castPtr
instance GLPoke GLfloat where glPoke x p = poke p x >> return (advancePtr p 1)
instance GLPoke Double where
glPoke x p = do
p <- glPoke (realToFrac x :: GLfloat) (castPtr p)
return (castPtr p)
instance GLPoke Point where
glPoke (Point x y) p = do
p <- glPoke x (castPtr p)
p <- glPoke y p
return (castPtr p)
instance GLPoke Triangle where
glPoke (Triangle v0 vl v2 t0 t1 t2 hO hl h2) p = do
p <- glPoke [v0, t0] (castPtr p)
p <- glPoke [hO, hl, h2] (castPtr p)
p <- glPoke [vl, t1] (castPtr p)
p <- glPoke [hO, hl, h2] (castPtr p)
p <- glPoke [v2, t2] (castPtr p)
p <- glPoke [hO, hl, h2] (castPtr p)
return (castPtr p)

vert = unlines
["#version 400 core”
, 7uniform mat4d mvp;”
, "layout (location = 0) in vec2 vp0;”
, 7layout (location = 1) in vec2 tc0;”

20

55

60

65

70

75

80

85

90

95

100

105

110

butterflies

hyperbolic/Main.hs

frag = unlines

[

"layout (location = 2) in
”smooth out vec2 tc;”

”flat out

vec3 hs;”

”void main() {”

kb

9

vecd vp = vecd (vp0, O.
gl_Position = vecd(vp.

7 te = tc0;”
” hs = hs0;”

"#version

400 core”

7uniform sampler2D tex;”
"uniform samplerlD pal;”
”smooth in vec2 tc;”
”flat in vec3 hs;”

"out layout(location = 0, index = 0) vecd f;”
”void main() {
vecd ¢ = vecd (0.0) ;7

vec2 t
vecd w

”

(
for (int i = 0; i < 16; 4++i)
for (int j = 0; j < 16; ++j)
te + float (i)/16.0 % dFdx(tc) + float(j)/16.0 x dFdy(tc);”
= texture(tex,

7if (w.a <= 0.5) {7

? c +=
else
c +=
else
Cc +=
else
c +=

c +=

vecd (0.5, 0.5,
if (w.r >= 0.5
vecd (1.0, 1.0,

vecd (0.0, 0.0,
if (w.r >= 0.5)

texture (pal, hs.

if (w.g >= 0.5)

texture (pal, hs.

vec3 hs0;”

0, 1.0) * mvp;”

xy, 0.0,

{
{

1.0);”

>= 0.5 & w.b >=

<= 0.5 & w.b <=

t);”
0.5, 1.0);”
w.g
0, 1.0);”
g
, 1.0)3”

}
}
}
7} else
}
}
}
£

I3

else if (w.b >= 0.5)
¢ += texture(pal, hs.

else {”
el

&&
1.0,
if (w.r <= 0.5 && w.
0
{
r
{
g
{
b

c / 256.0;”

main = do
_ <- getArgsAndlInitialize
_ <- createWindow ”butterfly”
loadTexture2D ”butterfly.png”
glActiveTexture gl TEXTUREI1
loadTexturelD ”palette.png”
program <- compileProgram
let count =

stride =

bytes =

vbo <- with 0 $ \q —> glGenBuffers 1 q >> peek q

length swarm =
(2 + 2 + 3) =

3
4

count * fromIntegral stride
allocaBytes bytes $§ \p —> do
glPoke swarm p

glBindBuffer gl ARRAY_BUFFER vbo

0.5) {»

0.5) {7

21

115

120

125

130

135

140

145

150

155

160

butterflies

hyperbolic/Main.hs

glBufferData gl ARRAY BUFFER (fromIntegral bytes) p gl STATIC_.DRAW

vao <- with 0 $ \q -> glGenVertexArrays 1 q >> peek ¢

glBindVertexArray vao

glEnableClientState gl VERTEX_ARRAY

glVertexAttribPointer 0 2 gl FLOAT (fromIntegral gl FALSE) stride (plusPtr v

G nullPtr (0 * 4))

glVertexAttribPointer 1 2 gl FLOAT (fromIntegral gl FALSE)

G nullPtr (2 * 4))

glVertexAttribPointer 2 3 gl FLOAT (fromlIntegral gl FALSE)

G nullPtr (4 % 4))
glEnableVertexAttribArray 0
glEnableVertexAttribArray 1
glEnableVertexAttribArray 2

let 1 = -1.5
= 1.5

ident = |
glUseProgram program
withArray ortho $ \p —> do

2

0, 2
) 07 07

0, 0

)

loc <- withCString "mvp” $ glGetUniformLocation program
glUniformMatrix4fv loc 1 (fromIntegral gl FALSE) p

stride (plusPtr »

stride (plusPtr »

withCString 7tex” $ \p —> glGetUniformLocation program p >>= \loc -> v

& glUniformli loc 0

withCString ”"pal” $ \p -> glGetUniformLocation program p >>= \loc —> v

& glUniformli loc 1
glClearColor 0.5 0.5 0.5 1
displayCallback $= do

glClear gl COLOR_BUFFER_BIT

glDrawArrays gl TRIANGLES 0 (fromlIntegral count)

swapBuffers
reportErrors
mainLoop

loadTexture2D f = do

RGBA img <- getDataFileName f >>= runlIL

readlmage

withForeignPtr (toForeignPtr img) $ \p -> do

tex <— with 0 § \q —> glGenTextures 1 q >> peek q
glBindTexture gl TEXTURE_2D tex

glTexImage2D gl TEXTURE_2D 0 (fromIntegral gl RGBA) 1024 1024 0 gl RGBA v

& gl.UNSIGNED_BYTE p

glTexParameteri gl TEXTURE_2D gl TEXTURE_MIN_FILTER (fromIntegral v~

& gl LINEAR_MIPMAP_LINEAR)

glTexParameteri gl TEXTURE_2D gl TEXTURE MAG_FILTER (fromIntegral gl LINEAR)

glGenerateMipmap gl TEXTURE_2D

loadTexturelD f = do

RGBA img <- getDataFileName f >>= runlIL

readlmage

withForeignPtr (toForeignPtr img) $ \p -> do

tex <— with 0 § \q —> glGenTextures 1 q >> peek q
glBindTexture gl TEXTURE_1D tex

22

165

170

175

180

185

10

15

20

butterflies hyperbolic/Tesselate.hs

glTexImagelD gl TEXTURE.ID 0 (fromIntegral gl RGBA) 256 0 gl RGBA v

 gl.UNSIGNED_BYTE p

glTexParameteri gl TEXTURE_1D gl TEXTURE MIN_FILTER (fromIntegral »

& gl LINEAR_MIPMAP_LINEAR)

glTexParameteri gl TEXTURE_1D gl TEXTURE.MAG._FILTER (fromIntegral gl LINEAR)

glGenerateMipmap gl TEXTURE_1D

compileProgram = do
program <- glCreateProgram
compileShader program gl VERTEX SHADER vert
compileShader program gl FRAGMENT SHADER frag
glLinkProgram program
debugProgram program
return program

compileShader program t src = do
shader <- glCreateShader t

withCString src $ \srcp -> with srcp $ \srcpp —> glShaderSource shader 1 srcpp#

& nullPtr
glCompileShader shader
glAttachShader program shader
glDeleteShader shader

debugProgram program = do
if program /= 0
then do

linked <— with 0 $ \p —> glGetProgramiv program gl LINK_STATUS p >> peek p

when (linked /= fromlIntegral gl. TRUE) $ putStrLn ”link failed”

len <- with 0 $ \p —> glGetProgramiv program gl INFO_LOG.LENGTH p >> peek »

S p

allocaBytes (fromIntegral len + 1) $ \p —> glGetProgramInfoLog program leny

& nullPtr p >> pokeByteOff p (fromIntegral len) (0 :: CUChar) >> »

& peekCString p >>= putStrLn
else putStrLn "no program”

17 hyperbolic/Tesselate.hs

module Tesselate
(tesselate
) where

import HalfPlane (Point(Point), dist)
import Trapezium

elemBy :: (t => t —> Bool) => t —> [t] —> Bool
elemBy eq x [] = False
elemBy eq x (y:ys)

| eq x y = True

| otherwise = elemBy eq x ys
closure :: (t —> Bool) —> (t —> t —> Bool) —> (t —> [t]) —> t —> [t]
closure p e f x = closure’ [] [x]
where
closure’ _ [] = []
closure’ old xs = xs ++ closure’ (old ++ new) new
where
new = [y | y <- concatMap f xs, p y, not (elemBy e y old) |

23

25

10

15

20

25

30

35

40

butterflies

hyperbolic/Trapezium.hs

tesselate Point -> Point -> [Trapezium]
tesselate (Point Ix ly)
& trapezium

where
approxEq s t = dist (origin s) (origin t) < 0.1
visible = inBox origin

inBox (Point x y) = Ix <= x && x <= hx && ly <= y && y <= hy

18 hyperbolic/Trapezium.hs

module Trapezium
(Trapezium (..)
, trapezium
, origin
, neighbours
, toTriangles
) where
import Data.List (partition)
import HalfPlane
import Triangle

data Trapezium = Trapezium{ bTL, bTM, bTR, bBR, bBL, bFR, bFL

& bWings, bBody Int }
deriving Show
trapezium Trapezium
trapezium = Trapezium tl tm tr br bl fr fl (-1) (-1) (-1)
where
tl = Point 0 1
t = fromPointAngle t1 (pi / 7)
1 = fromPointAngle tl (-pi / 7)
d = fromPointAngle tl 0
tm = atDist t t1 (1 = s / 2) True
tr = atDist t tl (2 * s / 3) True
fr = atDist t t1 (3 * s / 3) True
fl = atDist 1 t1 (3 * s / 3) True
bl = atDist 1 t1 (s / 3) True
br = atDist d tl r True
s = acosh ((cos (2 % pi / 7) + cos (2 = pi / T)
& two)
r = asinh (sinh s % sin (pi / 7) / sin (2 % pi / 3))
two Int
two = 2
origin Trapezium —> Point

origin = bBL

neighbours

neighbours z =
[(rotateAbout’
, (rotateAbout’
, (rotateAbout’

]

24

(bTL 2)
(bITM z)
(bBR z)

Trapezium -> [Trapezium |

(2 % pi / 7)
pi
(2 = pi / 3)

2){ bTL = bTL 2 }
z){ bIM = bIM z }
2){ bBR = bBR z }

Point ,

(Point hx hy) = closure visible approxEq neighbours v

bSpots

7z

" two) / sin (2 % pi / 7) " ¥

butterflies hyperbolic/Triangle.hs

rotateAbout’ :: Point -> Double —> Trapezium -> Trapezium
rotateAbout’” p a b =D
{ bTL = rotateAbout p a (bTL b)
, PIM = rotateAbout p a (bIM b)
, bTR = rotateAbout p a (bTR b)
, bBBR = rotateAbout p a (bBR b)
, bBL = rotateAbout p a (bBL b)
, bFR = rotateAbout p a (bFR b)
, bFL = rotateAbout p a (bFL b)
}
toTriangles :: Trapezium -> [Triangle]
toTriangles (Trapezium t1 _ tr br bl _ _ c0 cl ¢c2) =
[Triangle t1 tm bl (t 0 1) (t 0.5 1) (t 0.25 0) hO hl h2
, Triangle tm tr br (t 0.5 1) (t 1 1) (t 0.75 0) hO hl h2
, Triangle tm br bl (t 0.5 1) (t 0.75 0) (t 0.25 0) hO hl h2
]
where

h0 = fromIntegral c0 / 24
hl = fromIntegral cl / 24
h2 = fromIntegral c2 / 24
tm = midpoint tl tr

t = Point

19 hyperbolic/Triangle.hs

module Triangle
(Triangle (..)
, subtriangles
) where

import HalfPlane

data Triangle = Triangle{ tV0, tV1, tV2, tT0, tT1, tT2 :: Point, tHO, tH1, tH2 v
& :: Double }
deriving Show

subtriangles :: Triangle -> [Triangle]
subtriangles (Triangle vO vl v2 t0 t1 t2 hO hl h2) =
[Triangle vO v01 v02 t0O t01 t02 hO hl h2
, Triangle vl v01 v12 t1 t01 t12 hO hl h2
, Triangle v2 v02 v12 t2 t02 t12 hO hl h2
, Triangle v01 v02 v12 t01 t02 t12 hO hl h2
]
where
v0l = midpoint v0 vl
v02 = midpoint v0 v2
v12 = midpoint vl v2
t01 = eMidpoint t0 t1
t02 = eMidpoint t0 t2
t12 = eMidpoint t1 t2

20 LICENSE

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

25

15

20

25

30

35

40

45

50

55

butterflies LICENSE

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, to0o.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it , that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

) ’

protection , the GPL clearly explains
> and

For the developers’ and authors
that there is no warranty for this free software. For both users
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer

can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we

stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

26

60

65

70

75

80

85

90

95

100

105

110

115

butterflies LICENSE

Finally , every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general —purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS
0. Definitions.
”This License” refers to version 3 of the GNU General Public License.

”Copyright” also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

”The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you”. ”Licensees” and

"recipients” may be individuals or organizations.

To "modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a ”"modified version” of the
earlier work or a work ”based on” the earlier work.

A 7covered work” means either the unmodified Program or a work based
on the Program.

To ”propagate” a work means to do anything with it that, without
permission , would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To ”convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays ”Appropriate Legal Notices”
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.
The ”source code” for a work means the preferred form of the work

for making modifications to it. ”Object code” means any non-source
form of a work.

27

120

125

130

135

140

145

150

155

160

165

170

butterflies

LICENSE

A 7Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The ”System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
”Major Component”, in this context, means a major essential component
(kernel , window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The ” Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content , constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent , as provided by copyright law.

You may make, run and propagate covered works that you do not
convey , without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

28

175

180

185

190

195

200

205

210

215

220

225

230

butterflies LICENSE

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

)

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures .

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s
users , your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it , in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it , and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices”.

¢) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display

29

235

240

245

250

255

260

265

270

275

280

285

butterflies

LICENSE

Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
”aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer , valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the

Corresponding Source from a network server at no charge.

c¢) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities , provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

30

290

295

300

305

310

315

320

325

330

335

340

butterflies LICENSE

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A 7 User Product” is either (1) a ”consumer product”, which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation

into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, ”"normally used” refers to a

typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually wuses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial ;, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information” for a User Product means any methods,
procedures , authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking , reading or copying.

7. Additional Terms.

31

345

350

355

360

365

370

375

380

385

390

395

400

butterflies

LICENSE

” Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material , added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c¢) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered ”further
restrictions” within the meaning of section 10. If the Program as you
received it , or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction , you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License , you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files , a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

32

405

410

415

420

425

430

435

440

445

450

455

butterflies LICENSE

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally , unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated , you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or

run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer—-to—peer transmission
to receive a copy likewise does not require acceptance. However,

nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a

covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An ”entity transaction” is a transaction transferring control of an
organization , or substantially all assets of one, or subdividing an
organization , or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could

33

460

465

470

475

480

485

490

495

500

505

510

515

butterflies LICENSE

give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest , if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross—-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A 7contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The

k]

work thus licensed is called the contributor’s ”contributor version”.
A contributor ’s "essential patent claims” are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor wversion,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition , ”control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive , worldwide, royalty-free
patent license under the contributor’s essential patent claims, to
make, use, sell , offer for sale, import and otherwise run, modify and

propagate the contents of its contributor version.

In the following three paragraphs, a ”patent license” is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To ”grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license ,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. ”Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If , pursuant to or in connection with a single transaction or

arrangement , you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties

34

520

525

530

535

540

545

550

555

560

565

570

butterflies LICENSE

receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is ”discriminatory” if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the

Program specifies that a certain numbered version of the GNU General
Public License ”"or any later version” applies to it , you have the

35

butterflies LICENSE

option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software

575 Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
580 versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
585 permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.
590
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM ”AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 ~THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

600 16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE

USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF

DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD

PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS) ,

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
615 above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

620
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
625 If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

36

630

635

640

645

650

655

660

665

670

butterflies

NEWS

to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the ”copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction , make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate
parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an ”about box”.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a ”copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library , you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first , please read
<http://www.gnu.org/philosophy/why-not-1lgpl.html>.

21 NEWS

0.2.0.0 hyperbolic {7,3}/24 tiling
0.1.0.1 thicker outlines on butterfly tile
0.1.0.0 initial version {6,3}/4 butterfly tiling

22 OpenGLRaw2l.patch

diff -ruw OpenGLRaw21-1.2.0.1/OpenGLRaw2l.cabal OpenGLRaw21-1.3.0.0/OpenGLRaw2l. ¥

& cabal

37

10

15

10

15

20

25

butterflies README

——— OpenGLRaw21-1.2.0.1/OpenGLRaw2l. cabal 2013-01-10 18:11:57.000000000 »
& 40000

+++ OpenGLRaw21-1.3.0.0/OpenGLRaw21. cabal 2013-01-10 18:12:47.000000000 »
& +0000

@ -1,5 +1,5 @A

Name: OpenGLRaw21

—Version: 1.2.0.1

+Version: 1.3.0.0

Synopsis: The intersection of OpenGL 2.1 and OpenGL 3.1 Core

Description: This package simply reexports a subset of the

parts of OpenGLRaw which are compatible with
@@ -18,7 +18,7 @a

Cabal-version: >=1.6

Library

- Build-depends: OpenGLRaw =— 1.1.% || = 1.2.x%
Build -depends: OpenGLRaw =— 1.1.% || = 1.2.x || = 1.3.x
Extensions: NolmplicitPrelude
Exposed-modules: Graphics. Rendering . OpenGL.Raw. Core21
GHC-options: -Wall —-fwarn-tabs

23 README

butterflies —— butterfly tilings
Copyright (C) 2013 Claude Heiland-Allen <claude@mathr.co.uk>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

Example usage:

#!/bin/bash
for s in $(seq 2 5)

do
for p in $(seq 0 $((s/2)))
do
q=$((s-p))
butterflies —flat $q $p -geometry 1024x1024
done
done

24 Setup.hs

import Distribution . Simple
main = defaultMain

38

