fractal-channel-hopping

Claude Heiland-Allen

2011-2019

10

Contents

#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X

1 audio/fch.pd. 2
2 audio/voice™.pd 4
3 COPYING o 5
4 gitignore 17
5 NEWS e 17
6 photo/fractal-photo-mosaic.c 18
7 photo/Makefile 25
8 photo/prepare.sh 25
9 photo/README.Ind 25
10 README e 26
11 sre/channelc oL 26
12 sre/channel.h L 28
13 srefeonfigh ... L 29
14 sre/fchrag ... 30
15 sre/list.c o oo 31
16 sre/listh oo oo o 33
17 STC/MAain.C . . . o o 34
18 sre/Makefile L 45
19 sre/pfifo.c . .o 46
20 sre/pfifoh oL 47
21 STC/TECOTd.C . . v oo 48
22 srefrecord oL 50
23 sre/s2c.sh .o 51
24 sre/yuv2rgbdrag ... L 51
25 start.sh 52
audio/fch.pd

canvas 3 63 450 524 10;

obj 21 20 table \$0-notes 24;
obj 21 42 loadbang;

obj 21 86 s \$0-notes;

obj 21 108 loadbang;

msg 21 151 1;

obj 75 197 + 1;

obj 75 219 mod 24;

obj 21 195 f;

obj 21 217 t f f;

obj 21 239 mod 4;

obj 21 261 pack f f;

obj 72 241 tabread \$0-notes;
obj 21 283 route 0 1 2 3;

15

20

25

30

35

40

45

50

55

60

65

70

fractal-channel-hopping

#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X

obj 18 464 dac;

obj 277 125 loadbang;
msg 277 147 \; pd dsp 1;
obj 21 313 voice 7

obj 31 333 voice

obj 39 355 voice 7;

obj 51 373 voice 7

obj 18 396 hip~ 10;

obj 18 420 lop~ 10000;
obj 131 283 route 0 1 2 3;
obj 131 313 voice 7;

obj 141 333 voice™;

obj 149 355 voice " ;

obj 161 373 voice ";

obj 128 396 hip~ 10;

obj 128 418 lop~ 10000;
msg 21 64 00 952107 308511063 118419621174
obj 21 173 metro 2500;
obj 208 478 writesf™ 2;
msg 262 260 open —-bytes 4 fch.wav \, start;
obj 21 130 delay 1000;
obj 280 289 delay 1.8e+06;
msg 280 345 stop;

msg 280 394 \; pd quit;
obj 293 370 delay 1000;
obj 262 211 delay 60000;
floatatom 154 213 5 0 0 0 - - —, f 5;
connect 1 0 29 O0;
connect 3 0 33 O;
connect 4 0 30 O;
connect 5 0 6 O;

connect 6 0 7 1;

connect 7 0 5 0;

connect 7 0 8 O;

connect 7 0 39 O;
connect 8 0 9 O;

connect 8 1 11 O;
connect 9 0 10 O;
connect 10 0 12 O0;
connect 10 0 22 0;
connect 11 0 10 1;
connect 12 0 16 O0;
connect 12 1 17 0;
connect 12 2 18 O0;
connect 12 3 19 0;
connect 14 0 15 0;
connect 16 0 20 O0;
connect 17 0 20 O;
connect 18 0 20 O0;
connect 19 0 20 O0;
connect 20 0 21 O0;
connect 21 0 13 0;
connect 21 0 31 O;
connect 22 0 23 O0;
connect 22 1 24 O0;
connect 22 2 25 O0;

audio/fch.pd

75

80

85

90

10

15

20

25

30

35

fractal-channel-hopping

#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X

2

#AN
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X

connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect

audio/voice™.pd

canvas 3 58 450 300 10;

obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj

174

30
83
19
83
83
83
83
83
83
83
83
83
83
174
174
174
174
174
174
174
174
174
174

connect
connect
connect
connect
connect
connect
connect
connect
connect

22
23
24
25
26
27
28
28
29
30
32
33
33
34
34
35
37
38
38

19

104
124
144
164
184
205
225
245
265

SO DD O OO0 OO W
N
jen]

TR H OO0 OO0

OO O OO oo

inlet ;
174 41 mtof;
33 noise ";
64 vcf~
286 outlet 7;
84 wvef”

vef
vef
vef
vef
vef
vef

50;

50;

vef”

vef
vef

63 * 2;

85

107
129
151
173
195
217
239
261

o
o

NNDNDNNDNDRF~ =
OO O OO O OO

*
[\
H O NNNDNDNDNDNDDN >

© 00 IO UL W = Wk % % ¥ % ¥ % % %
ot

50;
50;
50;
50;
50;
50;
50;
50;
50;

P)

OO O O oo

audio/voice™.pd

40

45

50

55

60

65

70

10

15

fractal-channel-hopping

10
11
12
13

#X connect
#X connect
#X connect
#X connect
#X connect
#X connect
#X connect
#X connect
#X connect
#X connect
#X connect
#X connect 10
#X connect 11
#X connect 12
#X connect 13
#X connect 14
#X connect 15
#X connect 15
#X connect 16
#X connect 16
#X connect 17
#X connect 17
#X connect 18
#X connect 18
#X connect 19
#X connect 19
#X connect 20
#X connect 20
#X connect 21
#X connect 21
#X connect 22
#X connect 22
#X connect 23
#X connect 23
#X connect 24

3 COPYING

OO O OO

0O I O UL W N NNNDN
OO DO DODODODODO O OO
W~

OO O O oo

_— o o o oo

[«
o -

©
NSNS NN

=00 = N = O = O R R
Ne} oo -~

— — —
==

N = N =N O
N == OO
—

[eNeNeoNeNeNoNoNeoNololeNoeNoNoNeNoeNoNoeNeNoeNoNoNo Nl

[R gy
B W W N
— O R ORFROFRORO-=-

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to

20

25

30

35

40

45

50

55

60

65

70

75

fractal-channel-hopping

COPYING

your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it , that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

I ’

protection , the GPL clearly explains
> and

For the developers’ and authors
that there is no warranty for this free software. For both users
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer

can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we

stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally , every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general —purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS
0. Definitions.

”This License” refers to version 3 of the GNU General Public License.

80

85

90

95

100

105

110

115

120

125

130

fractal-channel-hopping COPYING

”Copyright” also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

”The Program” refers to any copyrightable work licensed under this
License. FEach licensee is addressed as "you”. ”Licensees” and

”recipients” may be individuals or organizations.

To "modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a ”"modified version” of the
earlier work or a work ”based on” the earlier work.

A 7covered work” means either the unmodified Program or a work based
on the Program.

To ”propagate” a work means to do anything with it that, without
permission , would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To ”convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays ”Appropriate Legal Notices”
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The ”source code” for a work means the preferred form of the work
for making modifications to it. ”Object code” means any non-source
form of a work.

A 7 Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The ”System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
”Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

135

140

145

150

155

160

165

170

175

180

185

190

fractal-channel-hopping

COPYING

The ” Corresponding Source” for a work in object code form means all
the source code needed to generate, install , and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content , constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey , without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

)

3. Protecting Users’ Legal Rights From Anti—-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures .

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or

195

200

205

210

215

220

225

230

235

240

245

fractal-channel-hopping

COPYING

modification of the work as a means of enforcing, against the work’s
users , your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it , in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the

terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it , and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices”.

¢) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
7aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms

250

255

260

265

270

275

280

285

290

295

300

fractal-channel-hopping

COPYING

of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer , valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the

Corresponding Source from a network server at no charge.

c¢) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially , and
only if you received the object code with such an offer , in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities , provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded

from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A ”User Product” is either (1) a ”consumer product”, which means any

tangible personal property which is normally used for personal, family,

or household purposes, or (2) anything designed or sold for incorporation

into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used” refers to a

typical or common use of that class of product, regardless of the status

of the particular user or of the way in which the particular user

10

305

310

315

320

325

330

335

340

345

350

355

360

fractal-channel-hopping COPYING

actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial , industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information” for a User Product means any methods,
procedures , authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking , reading or copying.

7. Additional Terms.

” Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material , added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you

11

365

370

375

380

385

390

395

400

405

410

415

fractal-channel-hopping

COPYING

add to a covered work, you may (if authorized by the copyright holders of

that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c¢) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in

reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that

material by anyone who conveys the material (or modified versions of

it) with contractual assumptions of liability to the recipient , for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non—-permissive additional terms are considered ”further
restrictions” within the meaning of section 10. If the Program as you
received it , or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction , you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files , a statement of the
additional terms that apply to those files , or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally , unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright

12

420

425

430

435

440

445

450

455

460

465

470

475

fractal-channel-hopping

COPYING

holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover , your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated , you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer—to—-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An "entity transaction” is a transaction transferring control of an
organization , or substantially all assets of one, or subdividing an
organization , or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest , if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

A 7contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The

work thus licensed is called the contributor’s ”contributor version”.

13

480

485

490

495

500

505

510

515

520

525

530

fractal-channel-hopping COPYING

A contributor ’s "essential patent claims” are all patent claims

owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty—-free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a ”patent license” is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To ”grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license ,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available , or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. ”Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are wvalid.

If , pursuant to or in connection with a single transaction or
arrangement , you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is ”discriminatory” if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that

14

535

540

545

550

555

560

565

570

575

580

585

fractal-channel-hopping COPYING

contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may

not convey it at all. For example, if you agree to terms that obligate you

to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License "or any later version” applies to it , you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

15

590

595

600

605

610

615

620

625

630

635

640

645

fractal-channel-hopping COPYING

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM ”AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS) ,
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the ”copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

16

650

655

660

665

670

10

15

fractal-channel-hopping .gitignore

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction , make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate
parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an ”about box”.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library , you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first , please read
<http://www.gnu.org/philosophy /why-not-1lgpl.html>.

4 .gitignore

src/fractal —channel —hopping
src /x.frag.c

photo/fractal —photo—mosaic
get_iplayer

rtmpdump

tmp

.ogv

.m2v

.wav

.mp2

.mkv

.data

.mp4

.mpeg

.webm

¥ X X X X X X X ¥

5 NEWS

v6 play videos from folders
v5 fix for get-iplayer mode name changes
v4 mplayer simplified stuff
v3 graphics speed boost etc
v2 preliminary sound mixing
vl first publicised version

17

10

15

20

25

30

35

40

45

50

55

fractal-channel-hopping

6 photo/fractal-photo-mosaic.c

#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib .h>
#include <GL/glew .h>
#include <GIFW/glfw3 .h>

#define COUNT (103+1)
#define WIDTH 1920
#define HEIGHT 1080

static unsigned char raw [COUNT][HEIGHT][WIDTH][3];
static unsigned char rawl6[COUNT][16][16][3];

static double 1lab16 [COUNT][16]
static double lab2 [COUNT][2]]2

static float graph[COUNT][8][8];

static int visited [COUNT];

[16][3];
1[3];

static unsigned char out [HEIGHT][WIDTH][3];

static const char xvert =
"#version 400 core\n”
?uniform vec2 delta;\n”
?uniform float zoom;\n”

7layout (location = 0) in vec2 pos;\n”
?layout (location = 1) in vec2 tc;\n”

?out vec2 c;\n”

”void main() {\n”

”

it

)

static const char xfrag =
"#version 400 core\n”

?uniform sampler2DArray tex;\n”
”uniform sampler2DArray map;\n”

7uniform int ix;\n”
”uniform vec3 blend;\n”
7in vec2 c;\n”

gl_Position = vecd4(zoom * (pos - delta) + delta, 0.0,
c = vec2(tc.x, 1.0 - tc.y);\n”

?layout (location = 0) out vec3 colour;\n”

?void main() {\n”

7 float 1 = textureQueryLod(tex, c).y;\n’
vee3 p0 = veed(c, float(ix)):\n”
texture (map, p0).x);\n”

7 vec3 pl = vec3 (8.0 * p0.xy,
7 pl.xy -= floor (pl.xy);\n”

? vec3 p2 = vec3 (8.0 x pl.xy,
7 p2.xy —= floor (p2.xy);\n”

7 vec3d sum = vec3(0.0);\n”

sum += textureLod (tex, p0,
sum += textureLod (tex, pl,
sum += textureLod (tex, p2,

1
1
1

+
+

3
6

)

texture (map, pl).x);\n”

).rgb * blend.x;\n”
).rgb % blend.y;\n”
).rgb * blend.z;\n”

photo/fractal-photo-mosaic.c

fractal-channel-hopping photo/fractal-photo-mosaic.c

? colour = sum;\n”

” }\n”

)

60 static void debug.program (GLuint program, const char xname) {
if (program) {
GLint linked = GL_FALSE;
glGetProgramiv (program, GL_LINK.STATUS, &linked);
if (linked != GLTRUE) {
65 fprintf(stderr, "%s: OpenGL shader program link failed\n”, name);
}
GLint length = 0;
glGetProgramiv (program, GLINFO_LLOGLENGTH, &length);
char #buffer = (char *) malloc(length + 1);
70 glGetProgramInfoLog (program, length, 0, buffer);
buffer [length] = 0;
if (buffer[0]) {
fprintf(stderr, "%s: OpenGL shader program info log\n”, name);
fprintf(stderr, "%s\n”, buffer);

75
free (buffer);
assert (linked = GL.TRUE) ;
} else {
fprintf(stderr, "%s: OpenGL shader program creation failed\n”, name);
80 }
}
static void debug_shader (GLuint shader, GLenum type, const char s*name) {
const char xtname = O0;
85 switch (type) {
case GL.VERTEX SHADER: tname = ”vertex”; break ;
case GLFRAGMENTSHADER: tname = ”fragment”; break;
case GL.COMPUTESHADER: tname = ”compute”; break;
default : tname = ”unknown”; break;
90 }
if (shader) {
GLint compiled = GLFALSE;
glGetShaderiv (shader , GL.COMPILE STATUS, &compiled);
if (compiled != GLTRUE) {
95 fprintf(stderr, "%s: OpenGL %s shader compile failed\n”, name, tname);
}
GLint length = 0;
glGetShaderiv (shader , GLINFOLOGLENGTH, &length);
char #buffer = (char *) malloc(length + 1);
100 glGetShaderInfoLog (shader, length, 0, buffer);
buffer [length] = 0;
if (buffer[0]) {
fprintf(stderr, "%s: OpenGL %s shader info log\n”, name, tname);
fprintf(stderr, "%s\n”, buffer);
105 }
free (buffer);
assert (compiled = GL.TRUE) ;
} else {
fprintf(stderr, "%s: OpenGL %s shader creation failed\n”, name, tname);
110 }

19

fractal-channel-hopping photo/fractal-photo-mosaic.c

static void compile_shader (GLint program, GLenum type, const char *name, const »
& GLchar *source) {
GLuint shader = glCreateShader (type);
115 glShaderSource (shader, 1, &source, 0);
glCompileShader (shader) ;
debug_shader (shader, type, name);
glAttachShader (program, shader);
glDeleteShader (shader);
120 }

static GLint compile_program (const char sname, const GLchar *vert, const GLchar v
G xfrag) {
GLint program = glCreateProgram () ;
if (vert) { compile_shader(program, GLVERTEXSHADER , name, vert); }
125 if (frag) { compile_shader(program, GLFRAGMENTSHADER, name, frag); }
glLinkProgram (program) ;
debug_program (program , name) ;
return program;

}

130 static double xyz2lab_f(double t)
{
static const double e = 0.008856;
static const double k = 903.3;

if (t > e)
135 return cbrt(t);
else
return (k x t + 16) / 116;
}
static void xyz2lab(double x, double y, double z, double x1, double *a, double *v
S b)
140 {
static const double xn = 0.95047;
static const double yn = 1.00000;
static const double zn = 1.08883;
X /= xn;
145 y /= yn;

z /= zn;

x = xyz2lab_f(x);

y = xyz2lab_f(y);

z = xyz2lab_f(z)
-1

150 *] = 116 * y 6;
xa = 500 % (x — y);
xb = 200 * (y - z);
}
155 static double srgb2xyz_f(double c)
{
if (c < 0.04045)
return ¢ / 12.92;
else
160 return pow((c + 0.055) / 1.055, 2.4);
}
static void srgb2xyz(double r, double g, double b, double #x, double xy, double v
G o*7)
{
static const double m[3][3] =
165 {{0.4124, 0.3576, 0.1805 }

20

170

175

180

185

190

195

200

205

210

215

220

fractal-channel-hopping

photo/fractal-photo-mosaic.c

, { 0.2126, 0.7152, 0.0722 }
. { 0.0193, 0.1192, 0.9505 }
s

srgb2xyz_f(r);
g = srgb2xyz_f(g);
b = srgb2xyz_f(b);
*x =m[0][0] * r
xy =m[1][0] * r
*z =m[2][0] * r

static void srgb2lab(double r,
& xbb)
{

double x, y, z;
srgh2xyz(r, g, b, &x, &y, &z);
xyz2lab(x, y, z, 1, a, bb);

}

double g,

extern int main ()

{

srand (Ox1lcedcafe);

FILE sfraw = fopen(”image.data”, 7rb”);
fread (&raw [0][0][0][0],
fclose (fraw);

fraw = fopen(” thumbs.data”, "rb”);
fread (&rawl6[0][0][0][0] , (COUNT-1) * 16 =
fclose (fraw) ;

glfwlnit ();
glfwWindowHint (GLFW_CONTEXT_VERSION_.MAJOR,
glfwWindowHint (GLFW_CONTEXT_VERSION_MINOR,

double

16 * 3,

4);
0);
GL.TRUE) ;

b, double %1, double xa, double v

(COUNT-1) * WIDTH * HEIGHT x 3, 1, fraw);

1, fraw);

glfwWindowHint (GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE) ;
glfwWindowHint (GLFW_.OPENGL DEBUG.CONTEXT, GL.TRUE) ;

(
(
glfwWindowHint (GLFW.OPENGL FORWARD.COMPAT,
(
(

glfwWindowHint (GLFW_RESIZABLE, GL_FALSE) ;

GLFWwindow s*window = glfwCreateWindow (WIDTH, HEIGHT, ” fractalize”, 0, 0);

glfwMakeContextCurrent (window) ;
if (! window) {
fprintf(stderr, 7glfw\n”);

return 1;
}
glewInit () ;
GLuint program = compile_program (” shader”, vert, frag);
glUseProgram (program) ;
GLint utex = glGetUniformLocation (program, "tex”);
GLint umap = glGetUniformLocation (program, "map”);
GLint uix = glGetUniformLocation (program, ”ix”);
GLint uzoom = glGetUniformLocation (program, ”zoom”);
GLint udelta = glGetUniformLocation (program, ”delta”);
GLint ublend = glGetUniformLocation (program, ”blend”);

glUniforml1i(utex, 0);

21

fractal-channel-hopping photo/fractal-photo-mosaic.c

glUniform1i (umap, 1);

GLuint vao;

225 glGenVertexArrays (1, &vao);
glBindVertexArray (vao);
GLuint vbo;

glGenBuffers (1, &vbo);
glBindBuffer (GLLAARRAY BUFFER, vbo);

230 GLfloat vbo_data[] =
{ -1, -1, 0, 0
. -1, 1,0, 1
, 1, -1, 1, 0
.1, 1,1, 1
235 +;

glBufferData (GLLARRAY BUFFER, 16 * sizeof (GLfloat), vbo.data, GLSTATICDRAW) ;
glVertexAttribPointer (0, 2, GLFLOAT, GLFALSE, 4 % sizeof (GLfloat), 0);
glVertexAttribPointer (1, 2, GLFLOAT, GLFALSE, 4 % sizeof (GLfloat), ((char x)v
G 0) + 2 % sizeof (GLfloat));
glEnableVertexAttribArray (0) ;
240 glEnableVertexAttribArray (1) ;

GLuint tex[2];
glGenTextures (2, &tex[0]);

245 glActiveTexture (GL.TEXTUREO + 0) ;
glBindTexture (GL.TEXTURE2D_ARRAY, tex[0]) ;
glTexImage3D (GL.TEXTURE2D_ARRAY, 0, GLRGB, WIDTH, HEIGHT, COUNT, 0, GLRCB, v
 GL.UNSIGNED_BYTE, &raw [0][0][0][0]) ;
glGenerateMipmap (GL.TEXTURE 2D_ARRAY) ;
glTexParameteri (GL.TEXTURE 2D_ARRAY, GLTEXTUREMIN FILTER, v
+ GL_LINEAR MIPMAP LINEAR) ;
250 glTexParameteri (GL.TEXTURE2D_ARRAY, GL.TEXTUREMAGFILTER, GL_LINEAR);
glTexParameteri (GL.TEXTURE 2D_ARRAY, GL.TEXTURE WRAP_.S, GL.CLAMP_.TOEDGE) ;
glTexParameteri (GL.TEXTURE2D_ARRAY, GL.TEXTURE.WRAP.T, GL.CLAMP.TO_EDGE) ;

for (int k = 0; k < COUNT - 1; ++k)
255 for (int j = 0; j < 16; ++j)
for (int i = 0; i < 16; ++i)

srgb2lab (rawl6[k][j][1][0]/255.0, rawl6[k][j][i][1]/255.0, rawl6[k][j][iv
S]][[2]]/)255.07 &labl16 [k][j][1][0], &labl6[k][j][i][1], &labl6[k][j][i~
S 21);
for (int k = 0; k < COUNT - 1; ++k)
260 for (int j = 0; j < 2; ++j)
for (int i = 0; 1 < 2; ++i)
{

double 1 = 0;
double a = 0;

265 double b 0;
for (int jj = 0; jj < 85 ++ij)
for (int ii = 0

{
I += lab16[k][8 * j + jj][8 = i 4+ ii][0];
270 a 4+= lab16[k][8 * j + jj][8 = i + ii][1];
b 4= lab16 [k][8 = j + jj][8 = i + ii][2];
}
1 /=8 x 8;

22

fractal-channel-hopping photo/fractal-photo-mosaic.c

a /=8 % §;
275 b /=8 x 8;
lab2 [k][j][i][0] = 1;
lab2 [k][j][i][1] = a;
} lab2 [k][j][i][2] = b;
280

{
285 double min_metric = 1.0 / 0.0;
int min_index = -1;
for (int kk = 0; kk < COUNT - 1; +4+kk)
{
if (kk = k) continue;
290 double s = 0;
for (int jj = 0; jj < 2; ++jj)
for (int ii = 0; ii < 2; ++ii)
for (int ¢ = 0; ¢ < 3; 4++c)
{
295 double x = lab16 [k][2xj + jj][2xi + ii][c];
double y = lab2[kk][jj][ii]][c];
double d = x - y;
s +=d x d;
}
300 if (s < min_metric)
min_metric = s;
min_index = kk;
}
305
graph[k][j][1] = min_index;
for (int j = 0; j < 8; ++j)
for (int i = 0; 1 < 8; ++i)
310 graph [COUNT - 1][j][i] = 0;

glActiveTexture (GL.TEXTUREO + 1);

glBindTexture (GL.TEXTURE2D_ARRAY, tex[1]);

glTexImage3D (GL.TEXTURE2D_ARRAY, 0, GL.R32F, 8, 8, COUNT, 0, GLRED, GLFLOAT,
G, &graph [0]]0][0]) ;

315 glTexParameteri (GL.TEXTURE2D_ARRAY, GL.TEXTUREMINFILTER, GLNEAREST);
glTexParameteri (GL.TEXTURE2D_ARRAY, GL.TEXTUREMAGFILTER, GLNEAREST);
glTexParameteri (GL.TEXTURE2D_ARRAY, GL.TEXTUREWRAP-S, GL.CLAMP.TO_EDGE) ;
glTexParameteri (GL.TEXTURE2D_ARRAY, GL.TEXTUREWRAP.T, GL.CLAMP.TO_EDGE) ;

320 int ix = COUNT-1;
int zoomi = 4;
int zoomj = 4;

int speed = 150;
double bdx = 0, bdy = 0;

325 for (int frame = 1; frame <= 15 % 60 * 60; ++frame)
{
if ((frame % speed) = 0)
ix = graph[ix][zoomj][zoomil];

23

330

335

340

345

350

355

360

365

370

375

380

385

fractal-channel-hopping

photo/fractal-photo-mosaic.c

int mi = Ox7fffffff;

for (int j = 0; j < 8; ++j)
for (int i = 0; 1 < 8; ++i)
{
int k = graph[ix][j][i];
int m = visited [k];
mi=m< mi ? m : mij;
}
int n = 0;
for (int j = 0; j < 8; ++j)
for (int 1 = 0; 1 < 8; ++i)
{
int k = graph[ix][j][i];
int m = visited [k];
n += mi = m;
}
int coin = rand () % n;
n = 0;
for (int j = 0; j < 8; ++j)
for (int 1 = 0; 1 < 8; ++i)
{
int k = graph[ix][j][i];
int m = visited [k];
if (mi = m)
{
if (coin = n)
zoomj = j;
zoomi = 1i;
visited [k] += 1;
}
n += 1;
}
}

}

// zoom blending
double

k = ((frame % speed) + 0.5) / speed;

double
double

zoom =

blend?2

pow (8, k); // hardcoded power — grid size...

=1 - cos x 3.141592653 « (k + 0) / 3);

double
double
double
blend0
blend1
blend2
double dx
double dy
dx /= 4;
dy /= 4;
dx —= 1;
dy —= 1;
bdx *= 0.95;

bdy *= 0.95;

bdx 4= 0.05 * dx;

bdy 4= 0.05 * dy;
glUniform1li(uix, ix);
glUniform1f (uzoom, zoom);

blendl =
blend0 =
blendt =
/= blendt;
/= blendt;
/= blendt;

1 - cos

= zoomi

24

(2
1 - cos(2
(2

« 3.141592653 % (
x 3.141592653 * (

blend0 + blendl + blend2;

*x 8 / (8 = 1.0);
=8 — zoomj *x 8 / (8 - 1.0);

k
k

+ 1) / 3);
+2) / 3);

390

395

400

10

15

10

fractal-channel-hopping photo/Makefile

glUniform2f (udelta, bdx, bdy);
glUniform3f(ublend, blend0, blendl, blend2);
glDrawArrays (GL.TRIANGLE_STRIP, 0, 4);
glfwSwapBuffers (window) ;
glReadPixels (0, 0, WIDTH, HEIGHT, GLRGB, GL.UNSIGNEDBYTE, &out[0][0][0]) ;
printf(” P6\n%d %d\n255\n”, WIDTH, HEIGHT);
for (int j = HEIGHT - 1; j >= 0; ——j)
{
fwrite(&out[j][0][0], WIDTH * 3, 1, stdout);

fflush (stdout);
}

return O0;

}
7 photo/Makefile

fractal —photo—mosaic: fractal —-photo—-mosaic.c
gcec —-std=c99 -Wall —Wextra —-pedantic -O3 -o fractal —-photo-mosaic fractal v
 —-photo-mosaic.c -lglfw -1GL -IGLEW -lm

8 photo/prepare.sh

#!/bin/sh
for i in *.jpeg *.png
do
convert 7${i}” -geometry 1920x1080" —gravity center v
. —extent 1920x1080 -blur 0x32 ”/tmpys

 /background.png”
convert 7${i}” -geometry 1920x1080 -gravity center —alpha opaque -background v

 transparent —extent 1920x1080 ” /tmp/foreground . png”
composite —compose Over —gravity center ”/tmp/foreground.png” ”/tmp/backgroundy
& .png” 7${i}.ppm”
done
for i in *.ppm
do

cat 7${i}” | tail —c $((1920 * 1080 * 3))
done > image.data
for i in *.ppm
do
convert "${i}” -geometry ’'16x16!’ ”/tmp/thumb.ppm”
cat 7 /tmp/thumb.ppm” | tail —-c $((16 = 16 = 3))
done > thumbs. data

9 photo/README.md

fractal —photo—-mosaic

render a zooming fractal video from a collection of images

mkdir images
cd images

25

15

20

10

15

20

25

30

35

fractal-channel-hopping README

10

wget *.jpeg *.png # needs exactly 103 images total , TODO FIXME hardcoding
../ prepare.sh

cd

In —-s images/image.data

In -s images/thumbs. data

make
./ fractal —photo-mosaic |
ffmpeg —i soundtrack.wav —-f image2pipe -codec ppm -framerate 60 -1 - \

-pix_fmt yuv420p —-profile:v high -level:v 4.1 -b:v 20M -b:a 192k \
fractal —photo—mosaic.mkv

README

QUICK START

get a computer with graphics drivers supporting OpenGL/GLSL 130
on Debian-based systems (you might need multimedia repositories)
sudo apt install \

build -essential \

libglewl.5-dev \

freeglut3 —dev \

libjack —jackd2-dev \

jackd \
mjpegtools \
mplayer \
ffmpeg

get the source, if you’re reading this you probably already have
git clone http://code.mathr.co.uk/fractal —channel-hopping. git
cd fractal —channel-hopping/

git tag —-1n99

git checkout v6 # or a different tag

prepare videos

mkdir v

cd v

In -s /path/to/some/videos/ ”Channel 01”

In -s /path/to/more/videos/ ”Channel 02”

etc, up to 12 channels

start JACK server

../ start.sh

watch tv

’Shift -R’ to start/stop recording

'F11° fullscreen

’Shift -Q’ or 'ESC’ to quit

NOTES

11

/%

be patient during startup (takes a few seconds)

sometimes it doesn’t quit cleanly , ” killall mplayer” perhaps
tested with NVIDIA proprietary drivers and AMD open source drivers
recording is in PAL DVD format (_-.mpeg)

src/channel.c

fractal —channel-hopping —— infinite fractal television zoom
Copyright (C) 2011,2015,2019 Claude Heiland-Allen

26

10

15

20

25

30

35

40

45

50

fractal-channel-hopping

src/channel.c

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#define DEFAULT_SOURCE
#include <pthread.h>
#include <stdio.h>
#include <stdlib .h>

#include <string.h>
#include <unistd.h>

#include ”config.h”
#include ”channel.h”

void *channel_main(void xarg) {

struct channel xchannel = arg;
if (channel->width = 256 && channel->height = 256) {
int bytes = 256 x 256 + 128 * 128 x 2;
const char xfmt = "mplayer —quiet -really —quiet —loop 0 -shuffle —aspect 1/1v
& -vf scale=256:256 —ao ’jack:name=%s:port=fch.*%s_[1-2]" -vo ’yuv4mpegs
G :file=tmp/%s . fifo > —fixed-vo "%s/ x.mp4d >’tmp/%s.mplayer.log’ 2>&1 & v
& cat “tmp/%s. fifo ’7;
int cmdlen = strlen(fmt) + 6 * strlen(channel->name) + 64;
char #cmd = malloc (cmdlen) ;
snprintf(cmd, cmdlen - 2, fmt, channel->name, channel->name, channel->name, »
 channel->name, channel->name, channel->name) ;
cmd [cmdlen-1] = 0;
FILE xvideo;
if ((video = popen(cmd, 7r”))) {
const char xvhdr25 = ?YUVAMPEG2 W256 H256 F25:1 Ip Al:1\n”;
const char *xvhdr50 = "YUVAMPEG2 W256 H256 F50:1 Ip Al:1\n”;
const char xfhdr = "FRAME\n”;
char hdr[64];
if (1 != fread(hdr, strlen(vhdr25), 1, video)) { channel->aborted = 1; »

& goto cleanup; }
hdr[strlen (vhdr25)] = 0;

if (strcmp(vhdr25, hdr) && strcmp(vhdr50, hdr)) { channel->aborted = 2; v

& goto cleanup; }
while (! channel->quit) {

if (1 != fread(hdr, strlen(fhdr), 1, video)) { channel->aborted = 3; v
& break; }
hdr[strlen (fhdr)] = 0;
if (strcmp(fhdr, hdr)) { channel->aborted = 4; break; }
if (1 != fread(channel->image, bytes, 1, video)) { channel->aborted = 5;»

& break; }

27

55

60

65

70

75

80

85

10

15

fractal-channel-hopping

src/channel.h

}

st

}

in

}

}

cleanup:
pclose (video);

}
free (cmd) ;

if (channel->aborted) {

fprintf(stderr, ”channel '%s’ aborted ’%d’\n”, channel->name, channel->v

& aborted);
}
pthread_exit (0);
return 0;

ruct channel xchannel_start(const char xname) {

struct channel sxchannel = calloc (1, sizeof(struct channel));
// clear YUV to black

memset(&channel—>image [0] , 0, VIDEO.WIDTH % VIDEO_HEIGHT) ;

memset(&channel —>image [VIDEO.WIDTH * VIDEO_HEIGHT], 128, 2 x VIDEOWIDTH/2 x v

. VIDEO_HEIGHT/2) ;
channel->name = strdup (name);
channel->width = VIDEO_WIDTH;
channel->height = VIDEO_HEIGHT;
if (pthread_create(&channel->thread, 0, channel_main, channel)) {
free (channel—>name) ;
free (channel);
return O;

}

return channel;

t channel_stop(struct channel sxchannel) {
channel->quit = 1;

pthread_join (channel->thread, 0);

int r = channel->aborted;

free (channel->name) ;

free (channel);

return r;

12 src/channel.h

/%

28

fractal —channel -hopping —- infinite fractal television zoom
Copyright (C) 2011 Claude Heiland-Allen

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

20

25

30

35

10

15

20

25

fractal-channel-hopping src/config.h

*/

along with this program. If not, see <http://www.gnu.org/licenses/>.

#ifndef CHANNELH
#define CHANNELH 1

#include <pthread.h>

#include ”config.h”

struct channel {

}s

st
in

pthread_t thread;

char xname;

int quit;

int aborted;

int width;

int height;

unsigned char image [VIDEOWIDTH % VIDEO HEIGHT + 2 % VIDEOWIDTH/2 x v
. VIDEO_HEIGHT /2];

ruct channel schannel_start(const char xname);
t channel_stop (struct channel *xchannel);

#endif

13 src/config.h

/%

fractal —channel-hopping —- infinite fractal television zoom
Copyright (C) 2011 Claude Heiland-Allen

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef CONFIG_H
#define CONFIGH 1

#define VIDEO.WIDTH 256
#define VIDEO_HEIGHT 256
#define GRID-WIDTH 16
#define GRIDHEIGHT 16

//

#define TEXTURESIZE 256

#define TEXTUREX 1.0f
#define TEXTUREY 0.5625f

29

fractal-channel-hopping sre/fch.frag

30
#define CHANNEL.COUNTMAX 16
#define OUTPUTWIDTH 1024
#define OUTPUTHEIGHT 576
35
#endif
14 src/fch.frag
/%
fractal —channel -hopping —- infinite fractal television zoom
Copyright (C) 2011,2019 Claude Heiland-Allen
5 This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
10 This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#version 130
20

uniform sampler2D images; // 4x4 tile sheet
uniform vec3 matches[12]; // hardcoded maximum channels
uniform int focus;
uniform float blendO;
25 uniform float blendl;
uniform float blend2;

vec3 get(int n, vec2 p, float bias, bool wrap) {
int j = int(floor(float(n) / 4.0));
30 int i =n -4 % j;
vec2 pl = p;
if (wrap) {
float k = pow (2.0, 8.0 - bias);
pl = floor(pl * k) / k;
35 }
pl x= 254.0 / 256.0;
pl += 1.0 / 256.0;
vec2 q = (vec2(float (i), float(j)) + pl) / 4.0;
return textureLod (images, q, bias).rgb;
40 }

int match(int def, vec3 c¢) {
float d = 1024.0;
int m = def;
45 for (int i = 0; i < 12; ++i) {
if (length(matches[i]) > 0.0) {
float d2 = length(c — matches[i]);

30

50

55

60

65

70

75

80

85

90

fractal-channel-hopping

src/list.c

if (d2 < d) {

d = d2;
m= i;
}
}
}
return m;
}
void main(void) {
int f0 = focus;

vec2 p0 = gl -TexCoord [0].xy;
vec3 c0 = get(f0, p0, 0.0, false);
vec3 ca = get(f0, p0, 4.0, true);

)

int fl1 = match(f0, ca)
vec2 pl = 16.0 * p0; pl
vec3 cl = get(fl, pl, 0O
vec3 cb = get(fl, pl, 4

-= floor (pl);
0, false)
0, true);

int f2 = match(fl, cb);

vec2 p2 = 16.0 * pl; p2 —= floor (p2);
vec3 c2 = get(f2, p2, 0.0, false);
float channel [1
channel [0] =
channel [1]
channel [2] =
channel
channel
channel
channel

[
[
[
[
[
[
channel |
[
[
[
[
[
[

I
cCoooco0co0co0co0Oo O —

channel
channel
channel] =
channel] = 0.0;
channel] += blend0;
channel [f1] 4= blendl;
channel [f2] += blend2;

3
4
5
6
7
8
9
1
1
f

]
]
]
]
]
]
| =
0
1
0

gl_FragData [0] = vec4(blend0 % c0 + blendl % ¢l + blend2 * c2, 1.0);
gl_FragData[1] = vec4(channel [0], channel[l], channel[2], channel[3]);
gl_FragData[2] = vec4(channel [4], channel[5], channel[6], channel[7])
gl_FragData[3] = vec4(channel [8], channel[9], channel[10], channel[11
}
15 src/list.c
/%
fractal —channel-hopping —- infinite fractal television zoom

Copyright (C) 2011 Claude Heiland-Allen

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

j);

31

10

15

20

25

30

35

40

45

50

55

60

65

fractal-channel-hopping

src/list.c

*/

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

#include <assert.h>
#include ”1list .h”

void list_-init (struct list *1) {

}

assert (1);

l->head = &(l->headNode);
l->tail = &(1->tailNode);
l->head—>pred = 0;
l->head->next = l->tail;
l->tail ->pred = l->head;
l->tail =>next = 0;

int list_ishead (struct node *n) {

}

assert (n);
return !n->pred;

int list_istail (struct node *n) {

}

assert (n);
return !n->next;

int list_isempty (struct list =*1) {

}

assert (1 && 1->head && 1->tail);
return l->head->next = l->tail;

int list_length (struct list =1) {

}

struct node *n = l->head->next;
int i = 0;
while (n != l->tail) {
n = n->next;
i++;
}

return i;

void list_-remove (struct node #*n) {

}

assert (n && n->pred && n->next);
n—->pred—->next = n->next;
n->next->pred = n->pred;

n->next = 0;

n—>pred = 0;

void list_insertbefore (struct node *n, struct node xbeforethis) {

assert (n && beforethis && beforethis-—>pred);

32

70

75

80

85

90

10

15

20

25

fractal-channel-hopping

sre/list.h

}

n->next = beforethis;
n—->pred = beforethis—->pred;
beforethis —>pred->next = n;
beforethis -—>pred = n;

void list_insertafter (struct node *n, struct node xafterthis) {

}

assert (n && afterthis && afterthis-—>next);
n->next = afterthis —>next;

n->pred = afterthis;

afterthis —>next—->pred = n;

afterthis ->next = n;

void list_inserttail (struct list *l, struct node *n) {

}

st

}

assert (1);
list_insertbefore (n, 1->tail);

ruct node xlist_-removehead (struct list 1) {
assert (1 && ! list_isempty (1));

struct node #*n = l->head->next;
list_.remove (n);

return n;

16 src/list.h

/%

*/
#i

fractal —channel -hopping —- infinite fractal television zoom
Copyright (C) 2011 Claude Heiland-Allen

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

fndef LIST_H

#define LIST_H 1

st

I

st

ruct node {
struct node *next;
struct node xpred;

ruct list {
struct node xhead;
struct node xtail;

33

30

35

40

45

10

15

20

25

30

35

fractal-channel-hopping

src/main.c

// private
struct node headNode;

struct node tailNode;

IE

void list_init (struct list x*1);

int list_ishead (struct node #mn);

int list_istail (struct node #n);

int list_isempty (struct list x*1);

int list_-length (struct list =1);

void list_.remove(struct node xn);

void list_insertbefore(struct node *n, struct node xbeforethis);
void list_insertafter (struct node *n, struct node xafterthis);
void list_inserttail (struct list *l, struct node *n);

struct node xlist_removehead (struct list x1);

#endif

17 src/main.c

/ %
fractal —channel -hopping —- infinite fractal television zoom
Copyright (C) 2011,2019 Claude Heiland-Allen

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#define DEFAULT_SOURCE
#define _POSIX_.C_.SOURCE 200809

#include <assert.h>
#include <math.h>

#include <signal .h>
#include <stdio.h>
#include <stdlib .h>
#include <string.h>
#include <time.h>

#include <unistd.h>

#include <GL/glew .h>
#include <GL/glut.h>

#include <jack/jack.h>

#include ”channel.h”
#include "record.h”

34

40

45

50

55

60

65

70

75

80

85

90

fractal-channel-hopping

src/main.c

#include ”fch.frag.c”
#include "yuv2rgb.frag.c”

int max(int x, int y) {
return x >y 7 x : y;
}

unsigned int roundtwo(unsigned int x) {
assert (x <= lu << 31u); // termination condition
unsigned int y = 1;
while (y < x) y <<= 1;
return y;

}

unsigned int logtwo (unsigned int x) {
assert (x <= lu << 31u); // termination condition
unsigned int y = 1, z = 0;
while (y < x) { y<<=1; z +=1; };

return z;
}
int focus = 0;
int speed = 75;
int frames = 0;
int tframes = 0;

int count;
struct channel xxchannels;

struct record xrecorder = O0;

int winw, winh;

int tsize;

GLuint texiny, texinu, texinv, timages, toutput, tmatch[3];
& channels / 4

GLuint fbo;

// fractalization shader

GLhandleARB prog;

GLhandleARB frag;

GLint uimages, umatches, ufocus, ublend0, ublendl, ublend2;
GLfloat vmatches[4 % 4][3];

// yuv2rgb shader

GLhandleARB prog_yuv2rgb;

GLhandleARB frag_yuv2rgb;

GLint yuv2rgb_y, yuv2rgb_u, yuv2rgb_v;

double zoom;
int zoomi;

int zoomj;
double blendO;
double blendl;
double blend?2;

jack_client_t *jclient;
jack_port_t xjporto[2];

// hardcoded:

(12) »

35

95

100

105

110

115

120

125

130

135

140

fractal-channel-hopping

src/main.c

jack_port_t xjport [CHANNEL.COUNTMAX][2];
float jlevel [2][CHANNEL.COUNTMAX];

int jwhich = 0;

void errorcb(const char xdesc) {
fprintf(stderr, "JACK error: %s\n”, desc);

}

void shutdowncb(void *arg) {

exit (1);

int processcb(jack_nframes_t nframes, void xarg) {

jack_default_audio_sample_t *in [CHANNEL.COUNTMAX][2], =out[2];
for (int ¢ = 0; ¢ < count; ++c) {

for (int k = 0; k < 2; +4+k) {

in[c][k] = (jack_default_audio_sample_t %) jack_port_get_buffer (jport[c][ky
&], nframes);
}
out [0] = (jack_default_audio_sample_t x) jack_port_get_buffer(jporto[0], v
& nframes);
out [1] = (jack_default_audio_sample_t *) jack_port_get_buffer (jporto[1l], »

& nframes);
for (jack_nframes_t

for (int k = 0; k < 2; ++k) {

i =0; i < nframes; ++i) {

jack_default_audio_sample_t o
for (int ¢ = 0; ¢ < count;
o += jlevel [jwhich][c] =

}
out [k][i] = o;
}
}

return O0;

}

—
1n

C

[

)
C

0;
{
IESRNE

void realloctexture (GLuint t, GLenum fmt, float r,

// resize texture

glBindTexture (GL.TEXTURE2D, t);
glTexImage2D (GL.TEXTURE 2D, 0, fmt, tsize, tsize, 0, fmt, GL.UNSIGNEDBYTE, 0)v

.

glBindTexture (GL.TEXTURE 2D, 0);

// clear texture

glViewport (0, 0, tsize, tsize);
glBindFramebufferEXT (GLFRAMEBUFFER EXT, fbo);

glFramebufferTexture2DEXT (GLFRAMEBUFFER EXT, GL.COLOR-ATTACHMENTOEXT,

& GL.TEXTUREZ2D, t, 0);
GLenum dbs[] = { GL.COLORATTACHMENTOEXT };
glDrawBuffers (1, dbs);
glClearColor (r, g, b, 0);
glClear (GL.COLOR_BUFFER.BIT) ;

glFramebufferTexture2DEXT (GLFRAMEBUFFER EXT, GL.COLOR.ATTACHMENTOEXT,

\ GL.TEXTUREZ2D, 0, 0);
glBindFramebufferEXT (GLFRAMEBUFFER EXT, 0);

}

void reshapecb(int w,

36

int h) {

float g,

float b) {

145

150

155

160

165

170

175

180

185

190

fractal-channel-hopping

src/main.c

if (recorder && (winw != w ||
record_stop (recorder);
recorder = 0;

}.

winw = w;

winh = h;

int oldtsize = tsize;

tsize = roundtwo (max(w, h));

if (oldtsize != tsize) {

}
}

realloctexture (toutput,
realloctexture (tmatch[0] , GLRGBA,
realloctexture (tmatch[1], GLRGBA,
realloctexture (tmatch [2], GLRGBA,

void displaycb (void) {
// upload channels of video to tile

{

// upload YUV planes

GLRGBA,

glActiveTexture (GL.TEXTUREO) ;
glBindTexture (GL.TEXTURE_2D,
for (int ¢ = 0; ¢ < count; ++c) {

glTexSubImage2D (GL.TEXTURE 2D, 0, (¢ % 4) = VIDEOWIDTH, (c

winh 1= h)) {

o O OO
(e R e i an Bl an)
o O OO

sheet

texiny);

/ 4) = »

+ VIDEO_HEIGHT, VIDEO-WIDTH, VIDEO_HEIGHT, GLLUMINANCE, v
 GL_.UNSIGNEDBYTE, &channels[c]->image[0]) ;

}

glActiveTexture (GL.TEXTURE]) ;
glBindTexture (GL.TEXTURE_2D,
for (int ¢ = 0; ¢ < count; ++c) {
glTexSubImage2D (GL.TEXTURE2D, 0, (¢ % 4) %= VIDEOWIDTH/2, (¢ / 4) % ¢
 VIDEO_HEIGHT /2, VIDEOWIDTH/2, VIDEOHEIGHT /2, GLLUMINANCE, v

& GL_.UNSIGNED BYTE, &channels[c]->image [VIDEOWIDTH x VIDEO_HEIGHT]) ;

}

glActiveTexture (GL.TEXTURE2) ;
glBindTexture (GL.TEXTURE_2D,
for (int ¢ = 0; ¢ < count; ++c) {
glTexSubImage2D (GL.TEXTURE2D, 0, (c¢ % 4) % VIDEO_WIDTH/?2,
 VIDEO_HEIGHT /2, VIDEO.WIDTH/2, VIDEOHEIGHT /2, GLLUMINANCE, v

 GL_.UNSIGNEDBYTE, &channels[c]->image [VIDEOWIDTH % VIDEOHEIGHT + v

texinu);

texinv);

 VIDEOWIDTH/2 # VIDEOHEIGHT/2]) ;

}
// convert to RGB

glViewport (0, 0, 1024,

1024) ;

glMatrixMode (GLPROJECTION) ;

glLoadIdentity () ;

glOrtho(0, 1, 0, 1, -1, 1);
glBindFramebufferEXT (GLFRAMEBUFFER EXT, fbo);

glFramebufferTexture2DEXT (GLFRAMEBUFFER EXT, GL.COLORATTACHMENTOEXT, v

& GL.TEXTURE2D, timages, 0);
GLenum dbs[] = { GL.COLOR.ATTACHMENTOEXT };
glDrawBuffers (1, dbs);
glUseProgramObject ARB (prog_yuv2rghb) ;
glUniformli(yuv2rgb_y, 0);
glUniformli(yuv2rgb_u, 1);
glUniform1i(yuv2rgb_v, 2);

glBegin (GL.QUADS) ; {

(¢ / 4) = v

37

195

200

205

210

215

220

225

230

235

240

fractal-channel-hopping

src/main.c

38

glTexCoord2f(0, 0); glVertex2f(0, 0);

glTexCoord2f (1, 0); glVertex2f(1, 0);

glTexCoord2f (1, 1); glVertex2f(1l, 1);

glTexCoord2f(0, 1); glVertex2f(0, 1);
} glEnd () ;

glUseProgramObject ARB (0) ;

glFramebufferTexture2DEXT (GLFRAMEBUFFER EXT, GL.COLORATTACHMENTOEXT, v

& GL.TEXTUREZ2D, 0, 0);
glBindFramebufferEXT (GLFRAMEBUFFER EXT, 0);
glBindTexture (GL.TEXTURE 2D, 0);
glActiveTexture (GL.TEXTUREL1) ;
glBindTexture (GL.TEXTURE 2D, 0);
glActiveTexture (GL.TEXTUREDO) ;
glBindTexture (GL.TEXTURE2D, timages);
glGenerateMipmap (GL.TEXTURE_2D) ;

glGetTexImage (GL.TEXTURE 2D, 8 /x hardcoded log2(4%256) - 2 %/, GLRGB, v

& GLFLOAT, vmatches);
glBindTexture (GL.TEXTURE 2D, 0);

}

// set up zooming view
glViewport (0, 0, winw, winh);
{
glMatrixMode (GLPROJECTION) ;
glLoadIdentity () ;
glOrtho (0, GRID.WIDTH, 0, GRID_HEIGHT, -1, 1);
glMatrixMode (GLMODELVIEW) ;
glLoadIdentity () ;
double dx = zoomi * GRIDWIDTH / (GRID.-WIDTH -
double dy = GRIDHEIGHT - zoomj % GRID HEIGHT / (GRID_HEIGHT -
glTranslatef(dx, dy, 0);
glScalef (zoom, zoom, zoom) ;
glTranslatef(-dx, -dy, 0);

)

1.0);
1.0);

}

// mega shader action

glBindFramebufferEXT (GLFRAMEBUFFER EXT, fbo);

glFramebufferTexture2DEXT (GLFRAMEBUFFER EXT, GL.COLORATTACHMENTO0EXT,
 GL.TEXTURE2D, toutput, 0);

glFramebufferTexture2DEXT (GLFRAMEBUFFER EXT, GL.COLORATTACHMENT1 EXT,
 GL.TEXTUREZ2D, tmatch[0], 0);

glFramebufferTexture2DEXT (GLFRAMEBUFFER EXT, GL.COLORATTACHMENT2EXT,
 GL.TEXTURE-2D, tmatch[1], 0);

glFramebufferTexture2DEX T (GLFRAMEBUFFER EXT, GL.COLORATTACHMENTS3EXT,
 GL.TEXTURE=2D, tmatch[2], 0);

GLenum dbs[] = { GL.COLORATTACHMENTOEXT, GL.COLORATTACHMENT1EXT, v
 GL.COLOR.ATTACHMENT2 EXT, GL.COLORATTACHMENT3EXT };

glDrawBuffers (4, dbs);

glUseProgramObjectARB (prog) ;

¢glBindTexture (GL.TEXTURE 2D, timages):;

glUniform1li(uimages, 0);

glUniform3fv (umatches, 12, &vmatches[0][0]) ;

glUniform1i(ufocus, focus);

glUniform1f(ublend0, blend0);

glUniform1f(ublendl, blendl);

glUniform1f(ublend2, blend2);

glBegin (GL.QUADS) ; {

245

250

255

260

265

270

275

280

285

290

fractal-channel-hopping

src/main.c

glTexCoord2f (0, 1); glVertex2f(0

glTexCoord2f (1, 1); glVertex2f(GRID WIDTH

glTexCoord2f (1, 0); glVertex2f(GRID-WIDTH,

glTexCoord2f(0, 0); glVertex2f(0 ,
} glEnd () ;

glBindTexture (GL.TEXTURE2D, 0);
glUseProgramObject ARB (0) ;
glFramebufferTexture2DEXT (GLFRAMEBUFFER EXT,
 GL.TEXTURE2D, 0, 0);
glFramebufferTexture2DEXT (GLFRAMEBUFFER EXT,
& GL.TEXTURE2D, 0, 0);
glFramebufferTexture2DEXT (GLFRAMEBUFFER EXT,
 GL.TEXTURE2D, 0, 0);
glFramebufferTextureQDEXT (GLFRAMEBUFFER._EXT,
 GL.TEXTURE2D, 0, 0);
glBindFramebufferEXT (GLFRAMEBUFFER EXT, 0);

// show output image
glLoadIdentity () ;

glBindTexture (GL.TEXTURE 2D, toutput);

glBegin (GL.QUADS) ; {
float tx = winw * 1.0f / tsize;
float ty = winh * 1.0f / tsize;
ngeXCoord2f(0 0); glVertex2f(0 , 0
glTexCoord2f (tx); glVertex2f (GRID-WIDTH, 0
glTexCoord2f(tx, ty); glVertex2f(GRID.WIDTH, GRID_HEIGHT
glTexCoord2f (0 ty); glVertex2f(0

} glBnd () ;

glBindTexture (GL.TEXTURE 2D, 0);

// grab auxiliary images to audio mixer
glBindTexture (GL.TEXTURE2D, tmatch[0]) ;
glGenerateMipmap (GL.TEXTURE2D) ;
glGetTexImage (GL.TEXTURE_2D,
& jwhich][0]);
glBindTexture (GL.TEXTURE 2D, tmatch[1]) ;
glGenerateMipmap (GL.TEXTURE2D) ;
glGetTexImage (GL.TEXTURE_2D,
& jwhich][4]);
glBindTexture (GL.TEXTURE2D, tmatch[2]);
glGenerateMipmap (GL.TEXTURE2D) ;
glGetTexImage (GL.TEXTURE 2D,
& jwhich][8]);
glBindTexture (GL.TEXTURE2D, 0);
double s = 0;
for (int ¢ = 0; ¢ < count; ++c) {
s += jlevel [1 - jwhich][c];

it (ts) |
s =)

}

for (int ¢ = 0; ¢ < count; ++c) {
jlevel [1 - jwhich][c] /= s;

}

jwhich = 1 - jwhich;

// PPM recording on stdout

0
0
GRID_HEIGHT
GRID_HEIGHT

)
)

5

— — — —

5

GL_.COLORATTACHMENTO_EXT,
GL_.COLOR_ATTACHMENT1.EXT,
GL.COLOR-ATTACHMENT2 EXT,

GL.COLOR-ATTACHMENT3_EXT,

)
)

5

— — — —

, GRID_HEIGHT

5

logtwo (tsize), GLRGBA, GLFLOAT, &jlevel [1 - v

logtwo (tsize), GLRGBA, GLFLOAT, &jlevel [l - v

logtwo (tsize), GLRGBA, GLFLOAT, &jlevel [l - »

39

295

300

305

310

315

320

325

330

335

340

345

fractal-channel-hopping

src/main.c

if (recorder) {
record_frame (recorder);
}

glutSwapBuffers () ;

// bug free code?
glutReportErrors () ;

// we done a frame
tframes++;
frames—++;

}

float smatch [4
[

16][4][16][3];
float matches [4]13];

I
4][4]

struct timespec clockO;
struct timespec clockl;

void timercb(int v) {
glutTimerFunc (1, timercb, v);
clock_gettime (CLOCKREALTIME, &clockl);

double dt = (clockl.tv_sec — clockO.tv_sec) + 1.0e-9 % (clockl.tv_nsec - v

& clockO.tv_nsec);
if (dt < 0.04 x tframes) {
return;

if (frames = speed) {
// refocus
glBindTexture (GL.TEXTURE 2D, timages);
glGenerateMipmap (GL.TEXTURE2D) ;

glGetTexImage (GL.TEXTURE 2D, 4, GLRGB, GLFLOAT, &smatch[0]]
glGetTexImage (GL.TEXTURE 2D, 8, GLRGB, GLFLOAT, &matches [0]

glBindTexture (GL.TEXTURE2D, 0);
float ml = 65536.0;
int mi = focus;
for (int ¢ = 0; ¢ < count; 4++c) {
float s = 0;
for (int k = 0; k < 3; ++k) {

J[0]);

float ds = smatch[focus / 4][zoom]j][focus % 4][zoomi][k] - vmatches[c][ky

Sl
s += ds * ds;
}
if (s < ml) {

focus = mi;

ml = 65536.0;

for (int ¢ = 0; ¢ < count; ++c) {
float s = 0;
for (int k = 0; k < 3; ++k) {

float ds = matches[focus / 4][focus % 4][k] - vmatches[c][k];

s += ds *x ds;
}

40

350

355

360

365

370

375

380

385

390

395

400

405

fractal-channel-hopping

src/main.c

ml = s;
mi = c;
}
}
focus = mi;

// self —centering random walk

if (rand() % 8) {

int coin = rand() % (GRID.WIDTH - 1);

zoomi += coin < zoomi 7 -1

}
if (rand() % 8) {

1;

int coin = rand() % (GRIDHEIGHT - 1);

zoomj += coin < zoomj 7 -1

}

frames = 0;

}

// zoom blending
double k = frames * 1.0 / speed;

zoom = pow (16, k); // hardcoded power - grid

1;

blend2 = 1 - cos(2 * 3.141592653 * (k + 0) / 3);
blendl = 1 - cos(2 x 3.141592653 * (k + 1) / 3);
blend0 = 1 - cos(2 % 3.141592653 * (k + 2) / 3);
double blendt = blend0 + blendl 4 blend2;

blend0 /= blendt;
blendl /= blendt;
blend2 /= blendt;

glutPostRedisplay () ;

}

int fullscreen = 0;

void keyboardcb (unsigned char key,
switch (key) {
case 'R’:
if (recorder) {
record_stop (recorder);
recorder = 0;

} else {

}
break ;

case 'Q’:
case 27:
exit (0);
break;
}
}

recorder = record_start (winw, winh, jclient , jporto);

void keyspecialch (int key, int x,
switch (key) {
case GLUTKEY_F11:
fullscreen = !fullscreen;
if (fullscreen) {
glutFullScreen () ;

int x,

int y) {

int y) {

41

fractal-channel-hopping src/main.c

glutSetCursor (GLUT_.CURSORNONE) ;
1 else {
glutReshapeWindow (OUTPUT_WIDTH, OUTPUT_HEIGHT) ;
glutSetCursor (GLUT_CURSORINHERIT) ;
410 }
break ;

}
}

415 void exitcb (void) {
if (recorder) {
record_stop (recorder);
recorder = 0;
}
420 jack_client_close (jclient);
killpg (getpgrp (), SIGKILL); // kill all our processes
for (int ¢ = 0; ¢ < count; ++c) {
channel_stop (channels|c]) ;

}

425 free (channels);

}

int main(int argc, char xxargv) {

430 // initialisation
if (arge <= 1) { return 1; }
count = argc - 1;
channels = calloc (count, sizeof(struct channel x));

435 srand (time (0)) ;
zoomj = rand () % GRID_HEIGHT;
zoomi = rand () % GRID_WIDTH;
glutInitWindowSize (OUTPUT_WIDTH, OUTPUTHEIGHT) ;
glutInit (&arge, argv);

440 glutInitDisplayMode (GLUT./RGBA | GLUT.DOUBLE);
glutCreateWindow (” fractal —channel-hopping”) ;
glewInit () ;

// set up jack first
445
jack_set_error_function (errorch);
if (!(jclient = jack_client_open(”fch”, 0, 0))) {
fprintf (stderr, ”jack server not running?\n”);
return 1;
450 }
jack_set_process_callback (jclient , processcb, 0);
jack_on_shutdown (jclient , shutdowncb, 0);
for (int ¢ = 0; ¢ < count; ++c) {
for (int k = 0; k < 2; ++k) {
455 char namebuf[64];
snprintf (namebuf, 62, "%s_%d”, argv[c + 1], k + 1);
namebuf[63] = 0;
jport[c][k] = jack_port_register (jclient , namebuf, JACKDEFAULT _AUDIO_TYPEY
& , JackPortIsInput, 0);
}
460 }
for (int k = 0; k < 2; ++k) {

42

fractal-channel-hopping src/main.c

char namebuf[64];
snprintf(namebuf, 62, "output %d”, k + 1);
namebuf[63] = 0;
465 jporto[k] = jack_port_register (jclient , namebuf, JACK DEFAULT AUDIO.TYPE, v
& JackPortIsOutput, 0);

if (jack-activate(jclient)) {
fprintf (stderr, ”cannot activate JACK client”);

return 1;
470 }
jack_connect (jclient , 7fch:output_-1”, ”system:playback_1");
jack_connect (jclient , ”fch:output_2”, ”system:playback_27);

// then start streaming channels which connect to us via jack

475

for (int ¢ = 0; ¢ < count; ++c) {
channels[c] = channel_start(argv[c + 1]);

}

480 // and prepare the display
glHint (GL.GENERATE MIPMAP HINT, GL_FASTEST);
glEnable (GL.TEXTURE.2D) ;
glGenFramebuffersEXT (1, &fbo);

485

// YUV planar video
tsize = 1024;
glGenTextures (1, &texiny);
realloctexture (texiny , GLLUMINANCE, 0, 0, 0);
490 glBindTexture (GL.TEXTURE2D, texiny);
glTexParameteri (GL.TEXTURE 2D, GL.TEXTUREMIN_FILTER, GLNEAREST) ;
glTexParameteri (GL.TEXTURE 2D, GL.TEXTUREMAGFILTER, GLNEAREST) ;
glBindTexture (GL.TEXTURE2D, 0);
tsize /= 2;
495 glGenTextures (1, &texinu);
realloctexture (texinu, GLLUMINANCE, 0.5, 0.5, 0.5);
glBindTexture (GL.TEXTURE 2D, texinu);
glTexParameteri (GL.TEXTURE 2D, GL.TEXTUREMIN FILTER, GLNEAREST) ;
glTexParameteri (GL.TEXTURE 2D, GL.TEXTUREMAGFILTER, GLNEAREST) ;
500 glBindTexture (GL.TEXTURE 2D, 0);
glGenTextures (1, &texinv);
realloctexture (texinv , GLLUMINANCE, 0.5, 0.5, 0.5);
glBindTexture (GL.TEXTURE 2D, texinv);
glTexParameteri (GL.TEXTURE 2D, GL.TEXTUREMIN FILTER, GLNEAREST) ;
505 glTexParameteri (GL.TEXTURE 2D, GL.TEXTUREMAGFILTER, GLNEAREST) ;
glBindTexture (GL.TEXTURE 2D, 0);

// RGB interleaved video
tsize = 1024,
510 glGenTextures (1, &timages);
realloctexture (timages, GLRGBA, 0, 0, 0);
glBindTexture (GL.TEXTURE2D, timages):;
glTexParameteri (GL.TEXTURE 2D, GL.TEXTUREMIN FILTER, GL_LINEAR MIPMAP LINEAR) v
S
glTexParameteri (GL.TEXTURE 2D, GL.TEXTUREMAGFILTER, GL_LINEAR);
515 glBindTexture (GL.TEXTURE 2D, 0);

43

520

525

530

535

540

545

550

555

560

565

570

fractal-channel-hopping

src/main.c

44

// RGB output

tsize = roundtwo (max(OUTPUTWIDTH, OUTPUTHEIGHT)) ;
glGenTextures (1, &toutput);

realloctexture (toutput, GLRGBA, 0, 0, 0);

glBindTexture (GL.TEXTURE2D, toutput);

glTexParameteri (GL.TEXTURE 2D, GL.TEXTUREMIN FILTER, GLNEAREST) ;
glTexParameteri (GL.TEXTURE 2D, GL.TEXTUREMAGFILTER, GLNEAREST) ;
glBindTexture (GL.TEXTURE2D, 0);

glGenTextures (3, &tmatch[0]) ;

realloctexture (tmatch [0], GLRGBA, 0, 0, 0);

realloctexture (tmatch[1], GLRGBA, 0, 0, 0);

realloctexture (tmatch[2], GLRGBA, 0, 0, 0);

// fractalization shader
GLint success;
prog = glCreateProgramObjectARB () ;
frag = glCreateShaderObject ARB (GLFRAGMENT_SHADER.ARB) ;
glShaderSourceARB (frag, 1, &fch_frag, 0);
glCompileShaderARB (frag) ;
glAttachObject ARB (prog, frag);
glLinkProgramARB (prog) ;
glGetObjectParameterivARB (prog, GL.OBJECT_LINK STATUS_ARB, &success);
if (! success) {

GLhandleARB obj = prog;

int infologLength = 0;

int maxLength;

if (glIsShader(obj)) {

glGetShaderiv (obj, GLINFOLOGLENGTH, &maxLength);

} else {
glGetProgramiv (obj, GLINFOLOGLENGTH, &maxLength) ;
}

char xinfoLog = malloc(maxLength);
if (linfoLog) {

exit (1);
}

if (glIsShader(obj)) {
glGetShaderInfoLog (obj, maxLength, &infologLength , infoLog);

} else {
glGetProgramInfoLog(obj, maxLength, &infologLength , infoLog);
}

if (infologLength > 0) {
fprintf(stderr, "%s\n”, infoLog);

}

free (infoLog);

exit (1);
}
uimages = glGetUniformLocationARB (prog, ”images”);
umatches = glGetUniformLocationARB (prog, ”"matches”);
ufocus = glGetUniformLocationARB (prog, ”focus”);
ublend0 = glGetUniformLocationARB (prog, ”blend0”);
ublendl = glGetUniformLocationARB (prog, ”blendl”);
ublend2 = glGetUniformLocationARB (prog, ”blend2”);

// YUV2RGB shader

prog.yuv2rgb = glCreateProgramObjectARB () ;

frag_yuv2rgb = glCreateShaderObject ARB (GLFRAGMENT_SHADER ARB) ;
glShaderSource ARB (frag_yuv2rgb, 1, &yuv2rgb_frag, 0);

575

580

585

590

595

600

605

610

615

fractal-channel-hopping src/Makefile

glCompileShaderARB (frag_yuv2rgb);
glAttachObject ARB (prog_yuv2rgb, frag_yuv2rgb);
glLinkProgram ARB (prog_yuv2rghb);
glGetObjectParameterivARB (prog_yuv2rgb , GL.OBJECT_LINK STATUS_ARB, &success);
if (! success) {
GLhandleARB obj = prog_yuv2rgb;
int infologLength = 0;
int maxLength;
if (glIsShader(obj)) {
glGetShaderiv (obj, GLINFOLOGLENGTH, &maxLength);
1 else {
glGetProgramiv (obj, GLINFOLOGLENGTH, &maxLength) ;
}

char xinfoLog = malloc (maxLength) ;
if (linfoLog) {

exit (1);
}

if (glIsShader(obj)) {
glGetShaderInfoLog (obj, maxLength, &infologLength , infoLog);

} else {

glGetProgramInfoLog(obj, maxLength, &infologLength , infoLog);
}

if (infologLength > 0) {
fprintf(stderr, "%s\n”, infoLog);

}
free (infoLog);
exit (1);
}
yuv2rgb_y = glGetUniformLocationARB (prog_yuv2rgh, "y”);

y
yuv2rgb_u = glGetUniformLocationARB (prog_yuv2rgb, "u”);
yuv2rgb_v glGetUniformLocationARB (prog_-yuv2rgb, v

// callbacks

glutKeyboardFunc (keyboardch) ;
glutSpecialFunc (keyspecialch);
glutReshapeFunc (reshapechb);
glutDisplayFunc (displaycb);
glutTimerFunc (1, timercb, 1);
atexit (exitcb);

// main loop

clock_gettime (CLOCKREALTIME, &clock0);
glutMainLoop () ;

return 0;

}
18 src/Makefile

fractal —channel-hopping —- infinite fractal television zoom
Copyright (C) 2011 Claude Heiland-Allen
#

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

#
This program is distributed in the hope that it will be useful,

45

10

15

20

25

30

35

10

15

20

25

fractal-channel-hopping src/pfifo.c

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

CC=gcc
CFLAGS=-std=c99 -Wall -pedantic —Wextra —Wno-unused-parameter —-O3 —-march=native v
- —pthread -IGLEW -1GL -lglut -ljack -Im

BINARY = fractal —channel-hopping

SOURCES = channel.c record.c pfifo.c list.c main.c
HEADERS = channel.h record.h pfifo.h list.h config.h
GENHEAD = fch.frag.c yuv2rgb.frag.c

all: §(BINARY)

clean:

-rm $ (BINARY) $(GENHEAD)

.SUFFIXES:
.PHONY: all clean

$ (BINARY) : $(SOURCES) $(HEADERS) $(GENHEAD)
$(CC) $(CFLAGS) -o $(BINARY) $(SOURCES)

%.frag.c: %.frag s2c.sh
./s2c.sh $x_frag < $< > %@

19 src/pfifo.c

/ %
fractal —channel-hopping —— infinite fractal television zoom
Copyright (C) 2011 Claude Heiland-Allen

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#include <assert.h>
#include <string.h>
#include " pfifo.h”

void *pfifo_consumerthread (void x);

struct pfifo spfifo_create(pfifo_.consumer *consumer, void xconsumerdata) {

46

30

35

40

45

50

55

60

65

70

fractal-channel-hopping

sre/pfifo.h

}

struct pfifo *p = malloc(sizeof(struct pfifo));
if (!p) return O;

list_init (&(p->1list));

p—>running = 1;

p—>consumer = consumer;

p—>consumerdata = consumerdata;

p—>mutex = malloc(sizeof (pthread_mutex_t));
pthread_mutex_init (p->mutex, 0);

p—>nonempty = malloc(sizeof (pthread_cond_t));
pthread_cond_init (p->nonempty, 0);
pthread_create (&(p—>thread), 0, pfifo_.consumerthread, p);
return p;

void pfifo_destroy (struct pfifo *p) {

}

p—>running = 0;
pthread_join (p—>thread, 0);
// FIXME proper cleanup ...

void pfifo_enqueue (struct pfifo *p, size_t length, const void xdata) {

}

struct pfifo_node *n = malloc(sizeof(struct pfifo_node));
assert (n);

n->length = length;

n->data = malloc(length);

assert (n—>data);

memcpy (n—>data, data, length);

pthread_mutex_lock (p—>mutex) ;

list_inserttail (&(p—>1list), &(n->node));

pthread _mutex_unlock (p—>mutex) ;

pthread_cond_signal (p—>nonempty) ;

void spfifo_consumerthread (void xfifo) {

}

struct pfifo xp = fifo;

pthread _mutex_lock (p—>mutex) ;

while (p->running) {
while (list_isempty (& (p->1ist))) pthread_cond_wait (p->nonempty, p->mutex);
struct pfifo.node *n = (struct pfifo_node %) list_.removehead (&(p—>1list));
p—>consumer (p—>consumerdata , n->length, n->data);
free (n—>data) ;
free(n);

}

pthread_exit (0);

return 0;

20 src/pfifo.h

/ %

fractal —channel -hopping —- infinite fractal television zoom
Copyright (C) 2011 Claude Heiland-Allen

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

47

fractal-channel-hopping src/record.c

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef PFIFO_H
#define PFIFOH 1

#include <stdlib .h>
#include <pthread.h>
#include ”list .h”

typedef void (pfifo_consumer)(void =, size_t , void x*);

struct pfifo_node {
struct node node;
size_t length;
void xdata;

s

struct pfifo {
pfifo_consumer xconsumer;
void *consumerdata;
struct list list;
pthread_t thread;
pthread_mutex_t xmutex;
pthread_cond_t *nonempty;
int running;

}s

struct pfifo xpfifo_create (pfifo_consumer #consumer, void *consumerdata);
void pfifo_destroy (struct pfifo *xfifo);
void pfifo_enqueue (struct pfifo *fifo, size_t length, const void xdata);

#endif

21 src/record.c

/%
fractal —channel-hopping —- infinite fractal television zoom
Copyright (C) 2011,2019 Claude Heiland-Allen

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

48

15

20

25

30

35

40

45

50

55

60

65

fractal-channel-hopping

src/record.c

«

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

#define DEFAULT_SOURCE

#include <stdio.h>
#include <stdlib .h>
#include <string.h>
#include <time.h>

#include <GL/glew .h>
#include <jack/jack.h>

#include ” pfifo.h”
#include ”record.h”

void record_writer (void xarg, size_t 1, void xdata) {

}

struct record xrecord = arg;
unsigned char xbuffer = data;
fwrite (record —>header, strlen (record—>header), 1, record->ppm);
for (int y = record->height - 1; y >= 0; ——y) {
fwrite (buffer + record—>width % y x 3, record->width * 3, 1, record->ppm);

if (! jack_port_connected_to(record->jport[0], ”"record:input-17))
jack_connect (record—>jclient , jack_port_name(record->jport[0]), "record:v
& input_17);
if (! jack_port_connected_to(record->jport[1l], "record:input_27)) {
jack_connect (record—>jclient , jack_port_name(record->jport[1]), ”record:v
& input_27);

}

struct record #record_start (int w, int h, jack_client_t =*jclient , jack_port_t s

o jports) {

struct record srecord = malloc(sizeof(struct record));
record —>width = w;

record—>height = h;

record—>bytes = w * h * 3;

record—>buffer = malloc(record->bytes);
snprintf(record—>header, 62, "P6\n%d %d 255\n”, w, h);

record —>header [63] = 0;

const char xvifmt = ”ppmtoydm -v0 -S444 -F25:1 2>’tmp/record.ppm.log’ | ffmpeg v
& —-loglevel 0 —f yuv4dmpegpipe —-i pipe:- —ac 2 -f jack —-i record -target v~
& pal-dvd -shortest ’fractal —channel-hopping %Y-%m%d _YH-9M-%S _%z . mpeg’ >’/

& tmp/record.ffmpeg.log’ 2>&17;
int vlen = strlen (vimt) + 64;
char *vemd = malloc(vlen);
time_t t = time (NULL);
struct tm tm;
localtime._r(&t, &tm);

if (0 = strftime(vemd, vlen, vimt, &m)) {
return O;

}

record—>jclient = jclient;

record—>jport [0] = jports [0];

49

70

75

80

10

15

20

25

30

35

fractal-channel-hopping src/record.h

record->jport [1] = jports [1];
record ->ppm = popen(vemd, "w”);
record—>pfifo = pfifo_create(record_writer, record);

return record;

}

void record_-frame (struct record s*record) {
glReadPixels (0, 0, record->width, record->height , GLRGB, GL.UNSIGNEDBYTE, v
& record->buffer);
pfifo_enqueue (record —>pfifo, record->bytes, record->buffer);

}

void record_stop (struct record xrecord) {
pfifo_destroy (record->pfifo);
pclose (record —>ppm) ;
free (record—>buffer);
free(record);

}
22 src/record.h

/%

fractal —channel-hopping —-— infinite fractal television zoom
Copyright (C) 2011 Claude Heiland-Allen

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#ifndef RECORDH
#define RECORDH 1

#include <stdio.h>
#include <jack/jack.h>
#include " pfifo.h”

struct record {
int width;
int height;
int bytes;
unsigned char xbuffer;
char header [64];
FILE *ppm;
FILE xwav;
struct pfifo xpfifo;

50

40

45

10

15

20

10

15

fractal-channel-hopping

src/s2c.sh

jack_client_t xjclient ;
jack_port_t xjport[2];

})

struct record srecord_start(int w, int h, jack_client_t *jclient , jack_port_t =xv

G jports);
void record_frame (struct record xrecord);
void record_stop(struct record xrecord);

#endif

23 src/s2c.sh

#!/bin /bash
fractal —channel -hopping —- infinite fractal television zoom
Copyright (C) 2011 Claude Heiland-Allen

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#
You should have received a copy of the GNU General Public License

FH IR HFFFHE

along with this program. If not, see <http://www.gnu.org/licenses/>.

echo 7 /% machine—generated file , do not edit */”
echo ”static const char x31 =7

sed 's|7|7| |
sed 's|$[\\n"|’
echo 7;”

24 src/yuv2rgb.frag

/ %
fractal —channel-hopping —— infinite fractal television zoom
Copyright (C) 2011 Claude Heiland-Allen

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

#version 130

o1

20

25

30

35

10

15

20

25

fractal-channel-hopping start.sh

uniform sampler2D y;
uniform sampler2D u;
uniform sampler2D v;

void main(void) {
const matd4d m = mat4(

1.1643828125, 0.0, 1.59602734375, -0.87078515625,
1.1643828125, -0.39176171875, -0.81296875, 0.52959375,
1.1643828125, 2.017234375, 0.0, -1.081390625,
0.0, 0.0, 0.0, 1.0

)

vec2 p = gl-TexCoord [0].xy;

vec3 yuv = vec3(texture(y, p).r, texture(u, p).r, texture(v, p).r);
gl_FragData [0] = vec4(yuv, 1.0) = m;

}
25 start.sh

#!/bin /bash
fractal —channel -hopping —- infinite fractal television zoom
Copyright (C) 2011,2019 Claude Heiland-Allen

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

F IR FH

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
#
S="$(dirname ”$(readlink -f 7$07)”)”
FCH="${S}/src/fractal —channel-hopping”
CHANNELS=(Channel)
make -C 7${S}/src” &&
mkdir -p tmp &&
for ¢ in ”${CHANNELS[Q]}”
do
rm —f 7tmp/${c}.fifo”
mkfifo ”?tmp/${c}. fifo”
done &&
?${FCH}” ”${CHANNELS|[Q]}”

52

