gmndl

Claude Heiland-Allen

2010-2017

10

15

20

25

Contents

Address.hs L
Calculate.hs
Complex.hs o
gitignore
gmndl.cabal
gmndLhs . . .
Image.hs
LICENSE . . .
MuAtom.hs e
Roots.hs
Setup.hs L

© 00 3 O U = Wi =

—_ =
—= O

1 Address.hs

{_

gmndl —— Mandelbrot Set explorer
Copyright (C) 2010,2011,2014 Claude Heiland-Allen <claude@mathr.co.uk>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

-}

module Address(Address(..), angledInternalAddress, externalAngles, rayEnd,
. parameter, parse, pretty) where

import Prelude hiding (isNaN)
import Control.Monad (guard)

import Control.Monad. Identity (Identity())
import Data.Char (digitTolnt)

7

30

35

40

45

50

55

60

65

70

75

80

gmndl

Address.hs

import Data. List (genericDrop, genericLength, genericTake,

import Data.Maybe (listToMaybe)
import Data.Ratio ((%), numerator, denominator)
import Data.Vec (NearZero())

import Text.Parsec (ParsecT (), choice, digit, eof, many, manyl,

G otry)
import Text.Parsec.Prim (runP)

import Complex (Complex((:+)), mkPolar, Turbo)
import MuAtom (refineNucleus)

isNaN x = not (x = x)

double :: Rational -> Rational
double angle = wrap (2 x angle)

wrap :: Rational -> Rational
wrap angle
| frac < 0 frac + 1
| otherwise = frac
where
_i :: Integer
(-i, frac) = properFraction angle

data Knead = Zero | One | Star
deriving (Eq, Show)

knead :: Rational -> [Knead]
knead angle
| angle = 0 || angle = 1 = [Star]
| otherwise = (++[Star]) . takeWhile (/= Star) . map k
& angle
where
k a
| a ‘elem‘ [angle / 2 , (angle + 1) / 2] = Star
| angle / 2 < a && a < (angle + 1) / 2 = One
| a < angle / 2 || (angle + 1) / 2 < a = Zero
period :: Rational -> Integer

period angle = genericLength (knead angle)

sepBy,

unfoldr)

string ,

iterate double $ v

internalAddress :: [Knead] -> [Integer]
internalAddress v = iA 1 [Star]
where
iA sk vk
| sk = genericLength v = []
| otherwise = sk’ : iA sk’ vk’
where
sk” = (+) 1 . genericLength . takeWhile id $ zipWith (==
& cycle vk)
vk’ = genericTake sk’ v
orbit :: Eq a => (a —> Maybe a) —> a —> [a]

[
orbit f x = x : unfoldr (fmap both . f) x
where
both z = (z, z)

) (cycle v)

(v

85

90

95

100

105

110

115

120

125

130

135

gmndl

Address.hs

rho :: [Knead] -> Integer —> Maybe Integer
rho v r = listToMaybe . concat $ zipWith3 f [r+1
& const) v (genericDrop r (cycle v))) v
where

fkab
| a/=b= [k
| otherwise = []
denominators :: [Knead] -> [Integer]
denominators v = zipWith f a (tail a)
where
a = internalAddress v
f sk skl
| sk ‘elem*‘ orbit (rho v) r = (skl - r) ‘div*
| otherwise = (skl - r) ‘div"
where
r | skl ‘mod‘ sk = 0 = sk
| otherwise = skl ‘mod‘ sk
numerators :: Rational —> [Integer] —> [Integer]| —>
numerators angle = zipWith f
where
f gk sk = genericLength . filter (<= angle) $ |
Gi<- [0 .. qk - 2]]

1000000]

~ o~
+ +

[N

[Integer]

data Address = P Integer | S Integer Rational Address

deriving (Eq, Ord, Show)

angledInternalAddress :: Rational -> Address
angledInternalAddress angle = foldr (\(s, pq) a => S s pq a)
& ss rs)
where
rs = zipWith (%) ns ds
ns = numerators angle ds ss
ds = denominators ks
ss = internalAddress ks

ks = knead angle

externalAngles :: Address —> Maybe (Rational, Rational)

externalAngles = externalAngles’ 1 (0, 1)
externalAngles”’
& , Rational)
externalAngles’ p0 lohi a0@(P p)
| pO /= p = case wakees lohi p of
[lh] —> externalAngles’ p lh a0
_ —> Nothing
| otherwise = Just lohi
externalAngles’ p0 lohi a0@Q(S p r a)
| pO /= p = case wakees lohi p of
[lh] —> externalAngles’ p lh a0

_ —> Nothing
| otherwise = do
let num = numerator r
den = denominator r
q =p * den
ws = wakees lohi ¢

(zipWith (flip »

wrap $ 2°(i * sk) * angle | v

(P (last ss)) (zip ¥

Integer -> (Rational, Rational) —> Address —> Maybe (Rational v

140

145

150

155

160

165

170

175

180

185

190

gmndl

Address.hs

nums = [num’ | num’ <- [1.. den - 1], let r’ = num’ % den,
 denominator r’ = den |
nws, nnums :: Integer
nws = genericLength ws
nnums = genericLength nums
guard (nws = nnums)
i <- genericElemIndex num nums
lh <- safeGenericIlndex ws (i :: Integer)
externalAngles’ q lh a

wakees :: (Rational, Rational) —-> Integer —> [(Rational, Rational)]
wakees (lo, hi) q =
let gaps (1, h) n
| n— 0= [(1, b)]
| n >0 = let gs = gaps (1, h) (n - 1)
cs = candidates n gs
in accumulate cs gs
candidates n gs =
let den =2 " n -1

in [r
| (1, b) < gs
, num <- [ceiling (1l * fromInteger den)
floor (h x fromInteger den) |

, let r = num % den
, Il <r, r<h
, period r = n
]

accumulate [] ws = ws

accumulate (1 : h : lhs) ws =

let (ls, ms@((ml, _):_)) = break (1 ‘inside ‘) ws
(-s, (-, rh):rs) = break (h ‘inside ‘) ms
in 1s + [(ml, 1)] ++ accumulate lhs ((h, rh) : rs)
inside x (1, h) =1 < x&& x < h
in chunk2 . candidates q . gaps (lo, hi) $ (q - 1)

chunk2 :: [t] —> [(t, t)]
chunk2 [] = []
chunk2 (x:y:zs) = (x, y) : chunk2 zs

genericElemIndex :: (Eq a, Integral b) => a -> [a] -> Maybe b
genericElemIndex _ [] = Nothing
genericElemIndex e (f:fs)

| e = f = Just O

| otherwise = (1 +) ‘fmap‘ genericElemIndex e fs
safeGenericIndex :: Integral b => [a] —> b —> Maybe a
safeGenericIndex [] - = Nothing

safeGenericIndex (x:xs) i
| i < 0 = Nothing

| i > 0 = safeGenericIndex xs (i - 1)
| otherwise = Just x

safeLast :: [a] —> Maybe a

safeLast [] = Nothing

safeLast xs = Just (last xs)

radius :: (Real r, Floating r) = r

z

195

200

205

210

215

220

225

230

235

240

gmndl Address.hs

radius = 2 *xx 24

sharpness :: Int
sharpness = 4
limit :: Int
limit = 64
distance :: Int

distance = 64

ray :: (Real r, Floating r, Turbo r) => Rational -> [Complex r]
ray angle = map fst . iterate (step angle) $ (mkPolar radius (2 * pi * v
 fromRational angle), (0, 0))

step :: (Real r, Floating r, Turbo r) => Rational -> (Complex r, (Int, Int)) -> »
& (Complex r, (Int, Int))
step angle (c, (kO, jO))
| j > sharpness = step angle (¢, (kO + 1, 0))
| otherwise = (¢’, (kO, jO + 1))

where

k=k0 +1

i =3j0 +1

m= (k — 1) % sharpness + j

r = radius #x ((1/2) *x (fromIntegral m / fromIntegral sharpness))

t = mkPolar (r % (2 %% fromIntegral k0)) ((2 *x fromIntegral k0) * 2 % pi *v
 fromRational angle)

c’ = iterate n ¢ !! limit

nz=1z- (cc - t) / dd

where

(cc, dd) = ncnd k
ncnd 1 = (z, 1)
ncnd i = let (nc, nd) = nend (i - 1) in (nc * nc + z, 2 % nc * nd + 1)

rayEnd :: (Real r, Floating r, Turbo r) => Rational -> Maybe (Complex r)

rayEnd = safeLast . takeWhile (\(r:+1i) —> not (isNaN r || isNaN i)) . take (¥
 sharpness % distance) . ray

parameter :: (NearZero r, Real r, Floating r, Turbo r) => Address —> Maybe (r, rv
S, o)

parameter a = do
(lo, hi) <- externalAngles a
cl <- rayEnd lo
c2 <- rayEnd hi
let ¢ = 0.5 % (cl 4+ ¢2)
return $ refineNucleus (addressPeriod a) c¢

addressPeriod :: Address -> Integer

addressPeriod (P p) = p

addressPeriod (S _ _ a) = addressPeriod a

parse :: String —-> Maybe Address

parse s = case runP parser () 7”7 s of
Left _ —> Nothing

Right a —> Just a

data Token = Number Integer | Fraction Integer Integer

gmndl Address.hs

245 type Parse t = ParsecT String () Identity t

parser :: Parse Address
parser = do
ts <- pTokens
250 accum 1 ts
where
accum p [] = return $ P p
accum _ [Number n] = return § P n
accum _ (Number n : ts@(Number _ : _))
255 a <- accum n ts
return $ S n (1%2) a
accum _ (Number n : Fraction t b : ts) = do
a <— accum (n % b) ts
return $ S n (t%b) a
260 accum p (Fraction t b : ts) = do
a <— accum (p % b) ts
return $ S p (t % b) a

do

pTokens :: Parse [Token]
265 pTokens = do
_ <— pOptionalSpace
ts <- pToken ‘sepBy‘ pSpace
_ <- pOptionalSpace

eof
270 return ts
pToken :: Parse Token

pToken = choice [try pFraction, pNumber]

275 pFraction :: Parse Token
pFraction = do
Number top <- pNumber
_ <- pOptionalSpace
_ <- string 7/
280 _ <- pOptionalSpace
Number bottom <- pNumber
guard $ top < bottom
return $ Fraction top bottom

285 pNumber :: Parse Token
pNumber = do
n <- foldl (\x y => 10 * x + y) 0 ‘fmap‘ map (tolnteger . digitTolnt) ‘fmap‘ »
& manyl digit
guard $ 0 < n
return $ Number n

290
pSpace :: Parse [String]
pSpace = manyl (string 7 7)
pOptionalSpace :: Parse [String]
295 pOptionalSpace = many (string 7 7)
pretty :: Address —> String
pretty (P p) = show p
pretty (S p r a) = show p ++ 7 7 4+ show (numerator r) 4++ ”/” 4+ show (¥

10

15

20

25

30

35

40

45

50

gmndl Calculate.hs

& denominator r) ++ 7 7 4+ pretty a

2 Calculate.hs

{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE FlexibleContexts #-}

{,

gmndl —— Mandelbrot Set explorer
Copyright (C) 2010,2011,2014,2017 Claude Heiland-Allen <claude@mathr.co.uk>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

-}
module Calculate (convert, renderer) where

—— simple helpers
import Control.Monad (when)

—— concurrent renderer with capability -specific scheduling

import Control.Concurrent (MVar, newEmptyMVar, takeMVar, tryTakeMVar, tryPutMVarv
& , threadDelay, forkIO, killThread)

import GHC.Conc (forkOn, numCapabilities)

—— each worker uses a mutable unboxed array of Bool to know which pixels
—— it has already started to render, to avoid pointless work duplication
import Data.Array.IO (IOUArray, newArray, readArray, writeArray, inRange)

—— each worker thread keeps a queue of pixels that it needs to render or

—— to continue rendering later

import Data.PriorityQueue (PriorityQueue, newPriorityQueue, enqueue, v
 enqueueBatch, dequeue)

—— poking bytes into memory is dirty, but it’s quick and allows use of
—— other fast functions like memset and easy integration with OpenGL
import Foreign (Word8)

—— higher precision arithmetic using libqd
import Numeric.QD.DoubleDouble (DoubleDouble())
import Numeric.QD. QuadDouble (QuadDouble())

import Complex (Complex((:+)), Turbo(sqr, twice), convert)

55

60

65

70

75

80

85

90

95

100

105

gmndl

Calculate.hs

—— some type aliases to shorten things
type B = Word8

type N = Int

type R = Double

{-
—-- colour space conversion from HSV [0..1] to RGB [0..1]
—— HSV looks quite ’chemical’ to my eyes, need to investigate something
—— better to make it feel more ’natural’
hsv2rgh :: R-> R -> R > (R, R, R)
hsv2rgb 'h !s v

| s =0= (v, v, V)

| h =1 = hsv2rgh 0 s v

| otherwise =

let !'i = floor (h % 6) ‘mod‘ 6 :: N

'f = (h x 6) — fromIntegral i
'p=v x (1 - s)
lq=v % (1 - s * f)
't =v *x (1 —s % (1 - f))
in case i of

0 —> (Va t, p)

1 > (q, v, p)

2 > (p7 v, t)

3 > (pa q, V)

4> (¢, p, v)

5 —> (V7 P, q)

- (07 07 0)

-}

hsv2rgb’ :: R -> R -> R -> (R, R, R)
hsv2rgb’ 'h !s !l =
let 'la =2 % pi x h

lca = cos a
Isa = sin a
ly =1/ 2
lu=3s/ 2 % ca
lv =5/ 2 % sa
Ir =y 4+ 1.407 * u
lg =y - 0.677 = u — 0.236 * v
'b =y 4+ 1.848 x v
in (r, g, b)

—— compute RGB [0..255] bytes from the results of the complex iterations
—— don’t need very high precision for this, as spatial aliasing will be
—— much more of a problem in intricate regions of the fractal

colour :: Complex Double —> Complex Double -—> N -> (B, B, B)
colour !(zr:4+zi) !(dzr:+dzi) !n =
let —— micro-optimization - there is no log2 function

1il2 = 1 / log 2

12zd2 = sqr zr + sqr zi

!'dzd2 = sqr dzr + sqr dzi

—— normalized escape time

!d = (fromIntegral n :: R) - log (log zd2 / log escapeR2) x 1il2
!dwell = fromIntegral (floor d :: N)

—— final angle of the iterate

!finala = atan2 zi zr

—— distance estimate

110

115

120

125

130

135

140

145

150

155

160

gmndl Calculate.hs

!de = (log zd2 % il2) % sqrt (zd2 / dzd2)
!'dscale = —log de * il2
—— HSV is based on escape time, distance estimate, and angle
'hue = log ((- log de * il2) ‘max‘ 1) = il2 / 16 + log d = il2
!'saturation = 0 ‘max‘ (log d % il2 / 8) ‘min‘ 1
!value = 0 ‘max‘ (1 - dscale / 256) ‘min‘ 1
'h = hue - fromIntegral (floor hue :: N)
—— adjust saturation to give concentric striped pattern
'k = dwell / 2
!'satf = if k - fromIntegral (floor k :: N) >= (0.5 :: R) then 0.9 else 1
—— adjust value to give tiled pattern
!'valf = if finala < 0 then 0.9 else 1
-— convert to RGB
('r, !g, !'b) = hsv2rgb’ h (satf * saturation) (valf % value)
—— convert to bytes
Irr = floor $ 0 ‘max‘ (255 % r) ‘min‘ 255
lgg = floor $ 0 ‘max‘ (255 % g) ‘min‘ 255
!bb = floor $ 0 ‘max‘ (255 % b) ‘min‘ 255
in (rr, gg, bb)

—— a Job stores a pixel undergoing iterations
data Job ¢ = Job IN IN !(Complex c¢) !(Complex ¢) !(Complex c¢) IN

—— the priority of a Job is how many iterations have been computed:

—-— so ’fresher

I

pixels drop to the front of the queue in the hope of

—— avoiding too much work iterating pixels that will never escape
priority :: Job ¢ -> N
priority !(Job - _ _ _ _ n) =n

—— add a job to a work queue, taking care not to duplicate work
—— there is no race condition here as each worker has its own queue
addJob :: (Real ¢, Floating ¢, Turbo ¢) => N -> N -> Complex ¢ -> ¢ -> ~

& PriorityQueue I0 (Job c¢) -> IOUArray (N,N) Bool -> N -> N -> 10 ()

addJob !w !'h !¢ !zradius’ todo sync !i !j = do

already <- readArray sync (j, i)
when (not already) $ do
writeArray sync (j, i) True
enqueue todo $! Job i j (coords w h ¢ zradius’ i j) 0 0 0

—— spawns a new batch of workers to render an image
—— returns an action that stops the rendering

re

re

10

nderer’ :: (Turbo c, Real ¢, Floating ¢) => MVar () -> ((N,N),(N,N)) —> (N —> v
G N->B->B->B->10 ()) > Complex ¢ -=> ¢ -> 10 (IO ())
nderer > done rng output !c¢ !zradius’ = do

wdog <- newEmptyMVar
workerts <— mapM (\w —> forkOn w $ worker wdog rng c¢ zradius
& workers - 1]
watcher <— forkIO $ do
() <- takeMVar wdog
let loop = do
threadDelay 10000000 —- 10 seconds
m <- tryTakeMVar wdog
case m of
Nothing —> mapM. killThread workerts >> tryPutMVar done () >> returnv

S0

Just () —> loop

I

output w) [0 ..»

loop

165

170

175

180

185

190

195

200

205

210

gmndl Calculate.hs

return $ killThread watcher >> mapM. killThread workerts

—— compute the Complex ’'c’ coordinate for a pixel in the image

coords :: (Real ¢, Floating ¢, Turbo ¢) = N -—> N —> Complex ¢ -=> ¢ => N —> N —>7
 Complex c
coords !w 'h !¢ l!zradius’ !i !j = ¢ 4+ ((fromIntegral (i - w'div‘2) = k)
:+(fromIntegral (h¢div‘2 - j) * k))
where !k = zradius’ / (fromIntegral $ (w ‘div‘ 2) ‘min‘ (h ‘div‘ 2))

—— the worker thread enqueues its border and starts computing iterations
worker :: (Turbo ¢, Real ¢, Floating ¢) = MVar () —> ((N,N),(N,N)) —> Complex cv
. >c¢c-—>(N->N->B->B->B->10 ()) >N->10 ()
worker wdog rng@ ((y0,x0),(yl,x1)) !c !zradius’ output !me = do
sync <— newArray rng False
queue <- newPriorityQueue priority
let addJ = addJob w h ¢ zradius’ queue sync
js = filter mine (border w h)
w=xl - x0+1
h=yl -y0+1
mapM_ (flip (writeArray sync) True) js
enqueueBatch queue (map (\(j,i) —> Job i j (coords w h ¢ zradius’ i j) 0 0 0) v

S ojs)
compute wdog rng addJ output queue
where mine (., i) = i ‘mod‘ workers = me —-- another dependency on spread

—— the compute engine pulls pixels from the queue until there are no
—— more, and calculates a batch of iterations for each
compute :: (Turbo c¢, Real ¢, Floating c¢) = MVar () —> ((N,N) ,(N,N)) —> (N > N v
G —=>10 ()) > N->N->B ->B ->B -> 10 ()) —=> PriorityQueue I0 (Job ¢) v
G —> 10 ()
compute wdog rng addJ output queue = do
mjob <- dequeue queue
case mjob of
Just (Job i j ¢ z dz n) —> do
let —— called when the pixel escapes
done’ !(zr:4+zi) !(dzr:+dzi) !n’ = {-# SCC ”done” #-} do
_ <- tryPutMVar wdog ()
let (r, g, b) = colour (convert zr :+ convert zi) (convert dzr :+ v
& convert dzi) n’
output i j r g b
—— a wavefront of computation spreads to neighbouring pixels
sequence_
[addJ x y
| u <- spreadX
, Vv <- spreadY
, let x =1 4+ u
, let y=j + v
, inRange rng (y, x)
]
—— called when the pixel doesn’t escape yet
todo’ !z’ !dz’ In’ = {-# SCC 7todo” #-} {- output i j 255 0 0 >> -} »
 enqueue queue $! Job i j ¢ z’ dz’ n’
calculate ¢ limit z dz n done’ todo’
compute wdog rng addJ output queue
Nothing —> return () —— no pixels left to render, so finish quietly

—— the raw z—>z"2+4c calculation engine

11

gmndl Calculate.hs

—— also computes the derivative for distance estimation calculations
—— this function is crucial for speed, too much allocation will slooow
—— everything down severely
215 calculate :: (Turbo c, Real ¢, Floating c¢) => Complex ¢ -—> N -> Complex ¢ -> ¢
 Complex ¢ —=> N -> (Complex ¢ -> Complex ¢ -=> N -> I0 ()) -> (Complex ¢ —> v
& Complex ¢ -=> N -> 10 ()) —> 10 ()
calculate !'c !mO !z0 !dz0 !n0 done todo = go mO z0 dz0O nO

where
go !m !z@Q(zr:4+zi) !dz !n
| not (sqr zr + sqr zi < er2) = done z dz n
220 | m<= 0 = todo z dz n
| otherwise = go (m - 1) (sqr z + ¢) (let !zdz = z * dz in twice zdz + 1) »
G (n + 1)
ler2 = convert escapeR2

—— dispatch to different instances of renderer depending on required precision
225 —— if zoom 1is low, single precision Float is ok, but as soon as pixel spacing

—— gets really small, it’s necessary to increase it

—— it ’s probably not even worth using Float - worth benchmarking this and

—— also the DD and QD types (which cause a massively noticeable slowdown)

renderer :: (Real ¢, Floating c¢) = MVar () -—> ((N,N) ,(N,N)) > (N—> N ->B —> v

- B ->B -> 10 ()) —> Complex ¢ -> ¢ —> 10 (IO ())
230 renderer done rng output !c¢ !zradius’
| zoom’ < 20 = {-# SCC ”rF” #-} renderer’ done rng output (f ¢ :: Complex ¢

& Float) (g zradius’)
| zoom’ < 50 = {-# SCC ”rD” #-} renderer’ done rng output (f c¢ :: Complex v
& Double) (g zradius’)

| zoom’ < 100 = {-# SCC ”rDD” #-} renderer’ done rng output (f ¢ :: Complex v
 DoubleDouble) (g zradius’)

| otherwise = {-# SCC 7"rQD” #-} renderer’ done rng output (f ¢ :: Complex v
& QuadDouble) (g zradius’)
235 where f !(cr :+ c¢i) = convert cr :4+ convert ci
g !x = convert x
zoom’ = - logBase 2 (zradius’ / (fromIntegral $ w ‘min‘ h))

((x0,y0), (x1, yl)) = rng
w=x1 - x0+ 1
240 h=yl -y0 + 1

—— start rendering pixels from the edge of the image
—— the Mandelbrot Set and its complement are both simply-connected
—— discounting spatial aliasing any point inside the boundary that is

245 —— in the complement is ’'reachable’ from a point on the boundary that
—— is also in the complement - probably some heavy math involved to
—— prove this though
—— note: this implicitly depends on the spread values below - it’s
—— necessary for each interlaced subimage (one per worker) to have
250 —- at least a one pixel deep border

border :: N -> N —> [(N, N)]

border !w !'h = concat $

([G,) [i<=[0..w-1],j<=[0]]

, [(GG, 1)y | <=0 h-117],i<-]0 workers — 1 | |
255 s [(G, 1)y | <10 .. h=-11],1i<-]w- workers .. w—-11]]

LG, i) i< [0 w-11],j<-[h-1]7]]

]

—— which neighbours to activate once a pixel has escaped
260 —— there are essentially two choices, with x<->y swapped

12

gmndl Complex.hs

—— choose greater X spread because images are often wider than tall
—— other schemes wherein the spread is split in both directions
—— might benefit appearance with large worker count, but too complicated

spreadX , spreadY :: [N]
265 spreadX = [—-workers, 0, workers |
spreadY = [-1, 0, 1]

—— number of worker threads
—— use as many worker threads as capabilities , with the workers

270 —— distributed 1-1 onto capabilities to maximize CPU utilization
workers :: N
workers = numCapabilities

—— iteration limit per pixel
275 —— at most this many iterations are performed on each pixel before it
—— is shunted to the back of the work queue
—— this should be tuneable to balance display updates against overheads
limit :: N
limit = (27(13::N)-1)
280
—— escape radius for fractal iteration calculations
—— once the complex iterate exceeds this, it’s never coming back
—— theoretically escapeR = 2 would work
—— but higher values like this give a significantly smoother picture
285 escapeR , escapeR2 :: R
escapeR = 65536
escapeR2 = escapeR x escapeR

3 Complex.hs

{-# LANGUAGE BangPatterns, FlexibleContexts #-}
{-

5 gmndl -- Mandelbrot Set explorer
Copyright (C) 2010,2011,2014 Claude Heiland-Allen <claude@mathr.co.uk>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

10 the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of

15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along

with this program; if not, write to the Free Software Foundation, Inc.,
20 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

-}
module Complex where

25
import Prelude hiding (atan2)

13

30

35

40

45

50

55

60

65

70

75

gmndl Complex.hs

import Foreign.C (CDouble)

—— higher precision arithmetic using libqd

import Numeric.QD.DoubleDouble (DoubleDouble(DoubleDouble))
import Numeric.QD.QuadDouble (QuadDouble(QuadDouble))
import qualified Numeric.QD.DoubleDouble as DD

import qualified Numeric.QD.QuadDouble as QD

import Numeric.AD.Mode. Reverse (Reverse)

import Data.Reflection (Reifies)

import Numeric.AD. Internal.Reverse (Tape)

—— ugly! but the default realToFrac :: (C)Double —> (C)Double is slooow
import Unsafe.Coerce (unsafeCoerce)

—— don’t look! this is really really ugly, and should be benchmarked

—— to see how really necessary it is, or at least made into a type class
convert :: (Real a, Fractional b) = a -> b

convert = realToFrac

{-# NOINLINE convert #-}

convertDouble2CDouble :: Double —> CDouble

convertDouble2CDouble !x = unsafeCoerce x
convertCDouble2Double :: CDouble —> Double
convertCDouble2Double !x = unsafeCoerce x

convertDouble2DoubleDouble :: Double —> DoubleDouble

convertDouble2DoubleDouble !x = convertCDouble2DoubleDouble . v
 convertDouble2CDouble $ x

convertCDouble2DoubleDouble :: CDouble —> DoubleDouble

convertCDouble2DoubleDouble !x = DoubleDouble x 0

convertDoubleDouble2Double :: DoubleDouble —> Double

convertDoubleDouble2Double !(DoubleDouble x _) = convertCDouble2Double x

convertDoubleDouble2CDouble :: DoubleDouble —> CDouble

convertDoubleDouble2CDouble !(DoubleDouble) = x

{-# RULES ” convert/Double2CDouble” convert = convertDouble2CDouble #-}

—-# RULES ” convert/CDouble2Double” convert = convertCDouble2Double #-}

-# RULES ”convert/Double2DoubleDouble” convert = convertDouble2DoubleDouble #-}

—-# RULES ”convert/CDouble2DoubleDouble” convert = convertCDouble2DoubleDouble v

-#

-#

™

S #-}
RULES ” convert/DoubleDouble2Double” convert = convertDoubleDouble2Double #-}
RULES ”convert/DoubleDouble2CDouble” convert = convertDoubleDouble2CDouble v

G o#-}

——— e -

{-

—— this is wugly too: can’t use Data.Complex because the qd bindings do

—— not implement some low-level functions properly, leading to obscure

—— crashes inside various Data.Complex functions...

data Complex ¢ = {-# UNPACK #-} !c¢ :+ {-# UNPACK #-} !c deriving (Read, Show, Eqv
S)

—— complex number arithmetic, with extra strictness and cost-centres
instance Num ¢ => Num (Complex c¢) where
('(a :+ b)) + (!(c :+ d)) = {-# SCC "C+” #-} ((a + ¢) :+ (b
('(a :+ b)) = (!(c :+ d)) = {-# SCC 7C-" #-} ((a - ¢) :+ (b
(1(a :+ b)) * (I(c :+ d)) = {-# SCC "C+” #-} ((a * ¢ — b

L oc))
negate !(a :+ b) = (-a) :+ (-b)
abs x = error $§ ”Complex.abs: 7 4++ show x
signum x = error $ ”Complex.signum: 7 4+ show x

14

gmndl Complex.hs

80 fromInteger !x = fromInteger x :+ 0

-}

—— an extra class for some operations that can be made faster for things
—— like DoubleDouble: probably should have given this a better name
85 class Num ¢ => Turbo c¢ where
sqr :: c —> ¢
sqr !x = x % x
twice :: ¢ —> ¢
twice !x = x + x
90
—— the default methods are fine for simple primitive types...

instance Turbo
instance Turbo
instance Turbo

Float where
Double where
CDouble where

95
—— ...and complex numbers
instance (Real ¢, Floating ¢, Turbo c¢c) => Turbo (Complex c) where
sqr !(r :4+ i) = (sqr r — sqr i) :+ (twice (r % 1))
twice !(r :+ 1) = (twice 1) :+ (twice 1)
100
—— use the specific implementations for the higher precision types
instance Turbo DoubleDouble where
sqr !x = DD.sqr x
twice !(DoubleDouble a b) = DoubleDouble (twice a) (twice b)
105
instance Turbo QuadDouble where
sqr !'x = QD.sqr x
twice !(QuadDouble a b ¢ d) = QuadDouble (twice a) (twice b) (twice ¢) (twice v
G d)

110 instance (Reifies s Tape, Num r) => Turbo (Reverse s r) where

data Complex r = !r :+ !Ir
deriving (Read, Show, Eq)
115
instance (Real r, Floating r, Turbo r) => Num (Complex r) where
(a i+ b) + (x i+ y) = (a+x) i+ (b+y)
(a i+ b) - (x 4 ¥) = (a-x) i+ (b-y)
(a :+ b) * (x -+ y) =(a*x-Db=x*xy):+ (a*y—+b*xx)
120 negate (a :+ b) = negate a :+ negate b
abs ¢ = magnitude ¢ :+ 0
signum = normalize
fromInteger n = fromInteger n :+ 0

125 instance (Real r, Floating r, Turbo r) => Fractional (Complex r) where
(a:+b) / (c:+d) = ((a = ¢ + b = d)/m2) :+ ((b * ¢ — a * d)/m2) where m2 = sqr v
G ¢ + sqr d
fromRational r = fromRational r :+ 0

magnitude (Real ¢, Floating ¢, Turbo ¢) => Complex ¢ -> ¢
130 magnitude (re:4+im) = sqrt $ sqr re + sqr im

cis :: (Real ¢, Floating c¢c) => ¢ —> Complex ¢
cis a = cos a :+ sin a

15

135

140

145

150

10

15

20

25

30

gmndl

mkPolar (Real ¢, Floating c¢) => ¢ —-> ¢ —> Complex ¢
mkPolar r a = (r % cos a) :+ (r % sin a)
phase (Real ¢, Floating c) => Complex ¢ —> ¢
phase (re:+im) = atan2 im re
normalize (Real ¢, Floating ¢, Turbo c¢) => Complex ¢ -> Complex c
normalize zQ(re:+im) = let m = magnitude z in (re / m) :+ (im / m)
atan2 (Real ¢, Floating c¢) = ¢ > ¢ —> ¢
atan2 y x
| x>0 = atan (y/x)
| x =0&& y >0 = pi/2
| x< 0&& y >0 = pi+ atan (y/x)
| x<=0&& y < 0 = -atan2 (-y) x
| v=0&& x < 0 = pi —— must be after the previous test on zero y
| x =0& y = 0=y -— must be after the other double zero tests
| otherwise = x+y — x or y is a NaN, return a NaN (via +)
4 .gitignore
.cabal -sandbox
cabal.sandbox. config
dist
5 gmndl.cabal
Name: gmndl
Version: 0.4.0.4
Synopsis: Mandelbrot Set explorer using GIK
Description:

Cabal-version :
License:
License-file:
Author:
Maintainer :
Category :
Build-type:

Executable gmndl

Main-1is:
Other-modules:

16

A Mandelbrot Set explorer. Multiple render threads
use higher precision maths at higher zoom levels.
Suggested usage:

@gmndl +RTS -N —qa -RTS --width=640 ——height=480@

Left —click to zoom in, right-click to zoom out. The
status bar shows where you are, and the entry field
takes an angled internal address, try for example:

@1\/3 1\/2 5 7@

>=1.6

GPL-2

LICENSE

Claude Heiland -Allen
claude@mathr. co.uk
Graphics

Simple

gmndl. hs
Address
Calculate
Complex

35

40

45

50

55

10

15

20

25

gmndl gmndl.hs

Image
MuAtom
Roots

Build —-depends: base >= 4 & < 5,
array >= 0.5 & < 0.6,
gtk >= 0.12 & < 0.15,
gtkglext >= 0.12 & < 0.14,
mtl >= 2.2 & < 2.3,
OpenGL >= 3.0 & < 3.1,
OpenGLRaw >= 3.2 && < 3.3,
parsec >= 3.1 & < 3.2,
priority —queue >= 0.2 && < 0.3,
qd >= 1.0 && < 1.1,
ad >= 4.2 && < 4.4,
reflection >= 1.5 & < 2.2,
Vec >= 1.0 & < 1.1

GHC-options: -02 -Wall —-threaded -fno-excess—precision —-funbox-strict -~

& fields -rtsopts

source—-repository head

type: git
location: https://code.mathr.co.uk/gmndl. git

source—repository this

6

{_

-}

type: git
location: https://code.mathr.co.uk/gmndl. git
tag: v0.4.0.4

gmndl.hs

gmndl —— Mandelbrot Set explorer

Copyright (C) 2010,2011,2014 Claude Heiland-Allen <claude@mathr.co.uk>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

module Main (main) where

import Prelude hiding (isNaN)

import Control.Concurrent (forkIO , newEmptyMVar, takeMVar, putMVar)
import Control.Monad (forever)

17

30

35

40

45

50

55

60

65

70

75

80

gmndl

gmndl.hs

—— some simple helpers

import

—— the
import

—— the
import

Data. List (isPrefixOf)

dependency on mtl is just for this!
Control .Monad. Trans (1iftIO)

main program thread needs to store some thread-local state
Data.IORef (newlORef, readlORef, writeIORef)

—— build the interface with GIK to allow more fancy controls later

import

—— use
import
import
import

—— need
import

import

import

Graphics . Ul. Gtk

OpenGL to display frequently update images on a textured quad
Graphics . Ul. Gtk.OpenGL

qualified Graphics.Rendering.OpenGL as GL

Graphics. Rendering .OpenGL (($=))

a hack to ensure correct qd operation
Numeric.QD. QuadDouble (QuadDouble())
Foreign (nullPtr)

Complex (Complex((:4)))

—— mu-atom properties

import Calculate
import qualified Image
import Address (parse, parameter)
isNaN x = not (x = x)
—— the state we need for everything
data GMNDL
= Invalid
| GMNDL
{ center :: Complex QuadDouble
, zradius :: QuadDouble
, image :: Image.Image

’

}

stop :: 10 ()

—— command line arguments: currently only initial window dimensions
data Args = Args{ aWidth :: Int, aHeight :: Int, aOversample :: Int, aRe :: v
& QuadDouble, alm :: QuadDouble, aZr :: QuadDouble }

—— and
—— come

the defaults are suitable for PAL DVD rendering, if that should
to pass in the future

defaultArgs :: Args
defaultArgs = Args{ aWidth = 788, aHeight = 576, aOversample = 1, aRe = 0, alm =v

o

0, aZr = 2 }

—— braindead argument parser: latest argument takes priority
—— probably should use Monoid instances for this stuff

combineArgs :: Args —-> String —-> Args
combineArgs a0 s
| 7"--width=" ‘isPrefixOf‘ s = a0{ aWidth = read $ 7--width=" ‘dropPrefix ‘¢ sv
S}

18

85

90

95

100

105

110

115

120

125

130

gmndl gmndl.hs

| 7—-w=" ‘isPrefixOf ¢ s = a0{ aWidth = read $§ "-w=" ‘dropPrefix * sv
o)

| "—--height=" ‘isPrefixOf‘ s = a0{ aHeight = read $?--height=" ‘dropPrefix ¢ sv
S}

| ”-h=" ‘“isPrefixOf ¢ s = a0{ aHeight = read $ ”-h=" ‘dropPrefix ¢ sv
o}

| "--—aa=" ‘isPrefixOf ¢ s = a0{ aOversample = read $§ "--aa=" ‘dropPrefix‘ sv
o)

| "—-re=" ‘isPrefixOf ¢ s = a0{ aRe = read $§ "—-re=" ‘dropPrefix‘ s }

| 7—-—im=" ‘isPrefixOf ¢ s = a0{ alm = read $ "—-im=" ‘dropPrefix‘ s }

| 7——zr=" ‘“isPrefixOf ¢ s = a0{ aZr = read $§ "—-zr=" ‘dropPrefix‘ s }

| otherwise = a0

—— this is a bit silly , especially with the duplicated string literals..
dropPrefix :: String -> String -> String
dropPrefix p s = drop (length p) s

—— the main program!
main :: IO ()
main = do
args <- foldl combineArgs defaultArgs ‘fmap‘ unsafelnitGUIForThreadedRTS
let width = aWidth args
height = aHeight args

oversample = aOversample args
rng = ((0, 0), (oversample % height — 1, oversample % width - 1))
_ <- initGL

glconfig <- glConfigNew [GLModeRGBA, GLModeDouble |

canvas <- glDrawingAreaNew glconfig

widgetSetSizeRequest canvas width height

window <- windowNew

eventb <- eventBoxNew

vbox <- vBoxNew False 0

status <- vBoxNew False 0

statusRe <- entryNew

statusIm <- entryNew

statusZr <- entryNew

ratios <- entryNew

boxPackStart vbox eventb PackGrow 0

boxPackStart vbox status PackGrow 0

boxPackStart vbox ratios PackGrow 0

boxPackStart status statusRe PackGrow 0

boxPackStart status statusIm PackGrow 0

boxPackStart status statusZr PackGrow 0

let —— update the status bar

updateStatus re im zr = do

entrySetText statusRe (show re)
entrySetText statusIm (show im)
entrySetText statusZr (show zr)

set window | containerBorderWidth := 0, containerChild := vbox, v
 windowResizable := False |
set eventb [containerBorderWidth := 0, containerChild := canvas |

—— initial state is invalid because...
sR <— newlIORef Invalid
done <- newEmptyMVar

let —— restart the renderer
restart :: IO ()
restart = do

19

135

140

145

150

155

160

165

170

175

180

185

gmndl gmndl.hs

g <- readIORef sR
stop g
Image. clear (image g)
stop’ <- renderer done rng (Image.plot (image g)) (center g) (zradius g)
writeIORef sR $! g{ stop = stop’ }
let re :4+ im = center g
updateStatus re im (zradius g)
—— ...need to initialize OpenGL stuff etc in this callback
_ <- onRealize canvas $ {-# SCC 7cbRz” #-} withGLDrawingArea canvas $ _. -> do
GL. matrixMode $= GL.Projection
GL.loadIdentity
GL.ortho 0.0 1.0 0.0 1.0 (-1.0) 1.0
GL.drawBuffer $= GL. BackBuffers
GL. texture GL.Texture2D $= GL.Enabled
i <— Image.new (oversample x width) (oversample x height)
writeIORef sR $! GMNDL{ image = i, center = aRe args :+ alm args, zradius = v
& aZr args, stop = return () }
restart
—— when the mouse button is pressed, center and zoom in or out
_ <- eventb ‘on‘ buttonPressEvent $ {-# SCC ”cbEv” #-} tryEvent $ do
b <- eventButton
(x, y) <= eventCoordinates
l1iftIO $ do
g <- readlORef sR
let w2 = fromIntegral width / 2
h2 = fromIntegral height / 2

p = convert x :+ convert (-y)
s = (zradius g / (w2 ‘min‘ h2)) :+ 0
¢ = center g + (p - (w2 :+ (-h2))) * s
zradius’ = zradius g * delta
delta | b = LeftButton = 0.5
| b = RightButton = 2
| otherwise =1
writeIORef sR $! g{ center = ¢, zradius = zradius’ }

restart
—— when typing in the coordinate boxes, zoom to the new place
_ <- statusRe ‘onEntryActivate‘ do
s <— entryGetText statusRe
liftIO $ do
g <- readlORef sR
case safeRead s of
Just re -> do

let _ :4+ im = center g
writeIORef sR $! g{ center = re :4+ im }
restart

Nothing -> return ()

_ < statusIm ‘onEntryActivate ‘ do
s <— entryGetText statusIm
1iftIO $ do

g <- readlORef sR
case safeRead s of
Just im -> do

let re :+ _ = center g
writeIORef sR $! g{ center = re :4+ im }
restart

Nothing -> return ()
_ <- statusZr ‘onEntryActivate‘ do

20

gmndl gmndl.hs

190 s <- entryGetText statusZr
1iftIO $ do
g <- readlORef sR
case safeRead s of

Just zradius’ -> do
195 writeIORef sR $§! g{ zradius = zradius’ }
restart

Nothing -> return ()
—— when pressing return in the ratios list , zoom to that mu-atom
muQueue <— newEmptyMVar
200 _ <- forkIO . forever $ do
qs <- takeMVar muQueue
case parameter =<< parse s of
Nothing -> postGUISync $ do

_ <- ratios ‘widgetSetSensitive * True
205 return ()
Just (cr, ci, radius) -> do
let zradius’ = radius * 3

¢ ¢ ’ ¢ ¢

cr ‘seq‘ ci ‘seq‘ zradius seq ¢ postGUISync $ do
g <- readlORef sR

210 if isNaN cr || isNaN ci
then writeIORef sR $! g{ center = c0, zradius = zradius0 }
else writeIORef sR $! g{ center = cr :+ ci, zradius = zradius’ }
_ <- ratios ‘widgetSetSensitive * True
restart
215 _ <- ratios ‘onEntryActivate ‘ do

s <— entryGetText ratios
_ <- ratios ‘widgetSetSensitive * False
g <- readlORef sR
stop g
220 putMVar muQueue s
—— time to draw the image: upload to the texture and draw a quad
_ <- onExpose canvas $ {-# SCC 7cbEx” #-} _. —> do
withGLDrawingArea canvas $ \glwindow —-> do
GMNDL{ image = i } <- readIORef sR
225 Image.upload i
Image.draw i
glDrawableSwapBuffers glwindow
return True
—— need an exit strategy
230 _ <— onDestroy window mainQuit
-- make sure the expose callback gets called regularly (5fps)
- <- timeoutAdd (widgetQueueDraw canvas >> return True) 200
—— and we’re off!
widgetShowAll window
235 mainGUI

—— initial center coordinates

—— using the maximum precision available from the start for this makes

—— sure that nothing weird happens when precision gets close to the edge
240 ¢0 :: Complex QuadDouble

c0 =0

—— initial zoom level

—— the initial zoom level should probably depend on initial image size
245 zradius0 :: QuadDouble

zradius0 = 2

21

gmndl Image.hs

safeRead :: Read a => String -> Maybe a

safeRead s = case reads s of
250 [(a, "”)] —> Just a
_ —> Nothing

7 Image.hs

{-# LANGUAGE ForeignFunctionInterface #-}
{-# LANGUAGE PatternSynonyms #-}

{_

gmndl —— Mandelbrot Set explorer
Copyright (C) 2010,2011,2014,2017 Claude Heiland-Allen <claude@mathr.co.uk>

This program is free software; you can redistribute it and/or modify

10 it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful ,

15 but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

-}

25 module Image (Image(), new, clear, plot, upload, with, draw, putPPM, hPutPPM) v
& where

—— poking bytes into memory is dirty, but it’s quick and allows use of

—— other fast functions like memset and easy integration with OpenGL

import Foreign (castPtr, mallocBytes, nullPtr, plusPtr, pokeByteOff, Ptr, Word8)
30 import Foreign.C (Clnt(..), CSize(..))

import qualified Graphics.Rendering.OpenGL as GL

import Graphics.Rendering.OpenGL (($=))

import Graphics.GL (glGenerateMipmap, pattern GL.TEXTURE2D)

import System.IO (Handle, hPutBuf, hPutStr, stdout)

35
data Image
= Image
{ pixels :: Ptr Word8
, width :: Int
40 , height :: Int
, size :: Int
, texture :: GL.TextureObject
}
45 —— these images are RGB only
channels :: Int
channels = 3

22

50

55

60

65

70

75

80

85

90

95

100

105

gmndl Image.hs

—— create a new image
—— note: this needs an OpenGL context
new :: Int -> Int -> IO Image
new w h = do
p <- mallocBytes $ w * h % channels
[t] <- GL.genObjectNames 1
let s = roundUp2 (w ‘max‘ h)
i = Image{ pixels = p, width = w, height = h, size = s, texture =t }
dim = GL. TextureSize2D (fromlIntegral s) (fromIntegral s)
img = GL. PixelData GL.RGB GL. UnsignedByte nullPtr
with 1 $ do
GL.texImage2D GL. Texture2D GL.NoProxy 0 GL.RGB’ dim 0 img
GL. textureFilter GL.Texture2D $= ((GL.Linear’, Just GL.Linear’), GL.Linear’)
GL. textureWrapMode GL.Texture2D GL.S $= (GL.Repeated, GL.ClampToEdge)
GL. textureWrapMode GL.Texture2D GL.T $= (GL.Repeated, GL.ClampToEdge)
clear i
upload i
return i

—— clear with white

clear :: Image —> IO ()

clear i = do
let bytes = width i % height i % channels
_ <- memset (castPtr (pixels 1)) 255 (fromIntegral bytes)
return ()

—— plot a pixel
plot :: Image —> Int —> Int —> Word8 —> Word8 —> Word8 —> 10 ()
plot i x y r g b=do
let p = pixels i ‘plusPtr‘ ((y * width i + x) * channels)
pokeByteOff p 0 r
pokeByteOff p 1 g
pokeByteOff p 2 b

—— upload an image to its texture
upload :: Image -> 10 ()
upload i = do
let pos = GL. TexturePosition2D 0 0
dim = GL. TextureSize2D (fromlIntegral $ width i) (fromIntegral $ height i)
img = GL.PixelData GL.RGB GL. UnsignedByte (pixels 1)
with i $ do
GL. texSubImage2D GL. Texture2D 0 pos dim img
glGenerateMipmap GL.TEXTURE_2D

—-— use a texture
—— FIXME TODO preserve the previous texture binding instead of clearing
with :: Image -> IO a —> IO a
with i act = do
GL. textureBinding GL. Texture2D $= Just (texture i)
r <- act
GL. textureBinding GL. Texture2D $= Nothing

return r

—— draw textured unit quad
draw :: Image —> 10 ()
draw i = do
let v :: GL.GLfloat —> GL.GLfloat —> GL.GLfloat —> GL. GLfloat —> IO ()

23

110

115

120

125

130

135

10

15

20

gmndl LICENSE

v tx ty vx vy = GL.texCoord (GL.TexCoord2 tx ty) >> GL.vertex (GL.Vertex2 v
G VX vy)
sx = fromIntegral (width i) / fromIntegral (size i)
sy = fromIntegral (height i) / fromIntegral (size i)
with i $§ GL.renderPrimitive GL.Quads $ do
v 0O sy 00O
0 001
sx 011
sx sy 1 0

< < <

—— save as PPM
putPPM :: Image -> IO ()
putPPM = hPutPPM stdout

hPutPPM :: Handle -> Image -> IO ()

hPutPPM h i = do
hPutStr h (”P6\n” ++ show (width i) ++ 7 7 4+ show (height i) ++ 7 255\n”)
hPutBuf h (pixels i) (width i % height i % channels)

—— round up to nearest power of two

—— this will probably explode when n gets large, but it’s only used
—— for OpenGL texture dimensions so you’ll run out of memory first
roundUp2 :: Int —> Int

roundUp2 n = head . dropWhile (< n) . iterate (2x) $ 1

—— import standard C library memset for clearing images efficiently
—— previous implementation used pokeArray ... (replicate ...)
—— which had a nasty habit of keeping the list around in memory
foreign import ccall unsafe ”string.h memset”

c.memset :: Ptr Word8 -> ClInt —> CSize -> IO (Ptr Word8)
memset :: Ptr Word8 —> Word8 —> CSize —> IO (Ptr Word8)
memset p w s = c_memset p (fromIntegral w) s

8 LICENSE

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software ——to make sure the software is free for all its wusers. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you

24

25

30

35

40

45

50

55

60

65

70

75

gmndl LICENSE

have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it , that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally , any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The ”Program”, below,
refers to any such program or work, and a ”"work based on the Program”
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in

the term " modification”.) FEach licensee is addressed as "you”.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted , and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s

25

80

85

90

95

100

105

110

115

120

125

130

135

gmndl

LICENSE

source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it , thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c¢) If the modified program normally reads commands interactively
when run, you must cause it , when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,

under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

26

gmndl LICENSE

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
140 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete

145 machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer

150 to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer , in accord with Subsection b above.)

155 The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files , plus the scripts used to
control compilation and installation of the executable. However, as a

160 special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernmel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

165
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not

170 compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is

175 void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

180 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the

185 Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
190 Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.

27

gmndl LICENSE

You are not responsible for enforcing compliance by third parties to
195 this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or

200 otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent

205 license would not permit royalty —free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

210 If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

215 It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made

220 generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

225
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
230 certain countries either by patents or by copyrighted interfaces , the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
235 the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to

240 address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and ”any
later version”, you have the option of following the terms and conditions
245 either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software

Foundation .

250 10. If you wish to incorporate parts of the Program into other free

28

255

260

265

270

275

280

285

290

295

300

305

gmndl LICENSE

programs whose distribution conditions are different , write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE ILAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS) , EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the ”copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,

29

gmndl MuAtom.hs

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
310 Also add information on how to contact you by electronic and paper mail.

If the program is interactive , make it output a short notice like this
when it starts in an interactive mode:

315 Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.

320 The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than ‘show w’ and ‘show c¢’; they could even be
mouse—clicks or menu items--whatever suits your program.

325 You should also get your employer (if you work as a programmer) or your
school , if any, to sign a ”copyright disclaimer” for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
330 ‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

335 This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library , you may
consider it more useful to permit linking proprietary applications with the
library . If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

9 MuAtom.hs

{-# LANGUAGE BangPatterns, RecordWildCards, Rank2Types, FlexibleContexts #-}
{-

5 gmndl —— Mandelbrot Set explorer
Copyright (C) 2010,2011,2014 Claude Heiland-Allen <claude@mathr.co.uk>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

10 the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of

15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along

with this program; if not, write to the Free Software Foundation, Inc.,
20 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

30

25

30

35

40

45

50

55

60

65

70

75

gmndl MuAtom.hs

module MuAtom (muAtom, refineNucleus) where

import Data.Ratio (numerator, denominator)

import Data. List (genericIndex, genericSplitAt)

import Data.Vec (NearZero())

import Numeric.QD (QuadDouble())

import Roots (root2, rootd, lift , FF)

import Complex (Complex((:+)), magnitude, phase, cis, mkPolar, normalize, Turbo)

type N = Integer
type Q = Rational
type R = QuadDouble
type C = Complex R

—-— a Mandelbrot Set mu-atom

data Atom = Atom{ nucleus :: !C, period :: IN, root :: !C, cardioid :: !Bool }
deriving Show

continent :: Atom
continent = Atom 0 1 1 True

—— finding bond points

fdf :: (Integral i, Num ¢) = i -=> ¢ -=> ¢ -=> (¢, ¢)

fdf !'n !z lc = let (fzs, fz:_) = genericSplitAt n $ iterate (\w > w * w + c) =z
in (fz, 2 "~ n % product fzs) ——- [fizc | i<-[0 ..n- 1]]

bondIter :: (Real r, Floating r) => Integer -> Complex r —> FF [] [] r

bondIter !n !(br:+bi) [x0, x1, x2, x3] =
let !z = x0:4+x1
le = x2:4+x3
'b = lift br :+ 1lift bi
(fz, !dfz) = fdf n z ¢
'(y0 :+ y1) = fz — 2z — fnzc -z
'(y2 :+ y3) = dfz - b —— df n z ¢ - (lift br :+ lift bi)
in [y0, yl, y2, y3]
bondIter - _ _ = error "MuAtom.bondIter: internal error”

—— finding nucleus

1 :: (Integral i, Numc) = i > ¢ -> ¢
l1 'n !¢ = (‘genericlndex‘ n) . iterate (\z > z x z + ¢c) $§ 0

nucleusIter :: (Real r, Floating r) => Integer —> FF [] [] r
nucleusIter !n [x0, x1] =
let !c = x0 4+ x1
'(y0 :+ y1) =1 n ¢

in [y0, y1]
nucleuslter _ _ = error "MuAtom. nucleuslter: internal error”
refineNucleus :: (NearZero r, Real r, Floating r, Turbo r) => Integer -> Complexy

G r —> (r, r, r)
refineNucleus p root@(gr :+ gi) =
let eps = le-20 —— FIXME

31

80

85

90

95

100

105

110

115

120

125

gmndl

Roots.hs

in

[cr, ci] = root2 eps (nucleuslter p) [gr, gi]
[, -, bOr, bOi] = root4d eps (bondIter p (1)) [cr, ci, cr, ci]
[, -, blr, bli] = root4d eps (bondlter p (-1)) [cr, ci, cr, ci]

bond0 = bOr :+ bOi

bondl = blr :4+ bli

r = magnitude (bondl - bond0)
(cr, ci, 1)

—— finding descendants

muChild :: Atom —-> Q -> Atom
muChild !Atom{..} laddress =

let

—— some properties of the parent and its relation to the child

I'size = magnitude (root — nucleus)

laddress’ = fromlIntegral (numerator address) / fromIntegral (denominator »
& address)

langle = 2 % pi * address’

!(bar :+ bai) = cis angle
!bondAngle = bar :4+ bai

!child = period * denominator address

—— perturb from the stable nucleus to help ensure convergence to the bond v~
& point

! _initial@ (ir :+ ii) = nucleus + mkPolar (size / 2) (phase (root — nucleusy

&) + angle)

[, -, br, bi] = {-# SCC ”bond” #-} rootd4d eps (bondlter period bondAngle) v
G [ir, ii, ir, ii]

!bondPoint = br :+ bi

—— estimate where the nucleus will be

'radiusEstimate

| cardioid = size / m2 % sin (pi % address’)

| otherwise = size / m2

where m2 = fromIntegral (denominator address) "~ (2 :: N)
!deltaEstimate = bondPoint - nucleus

! _guess@(gr :+ gi) = bondPoint + (radiusEstimate :4+ 0) % normalize »
& deltaEstimate

-— refine the nucleus estimate

[cr, ci] = {-# SCC ”nucleus” #-} root2 eps (nucleuslter child) [gr, gi]

!'childNucleus = cr :+ ci

eps = radiusEstimate / 10000000

Atom childNucleus child bondPoint False

in
muChildren :: Atom -> [Q] —> [Atom]

muChildren 'a [] = [a]
muChildren 'a (q:qs) =

let b = muChild a q in a : muChildren b gs

—— interface to the outside world

mulAtom :: [Q] > (R, R, R, N)
muAtom qs =
let Atom{..} = last $ muChildren continent gs

r :+ i = nucleus
s = magnitude (nucleus — root)
p = period

in (r7 17 S? p)

10

32

Roots.hs

10

15

20

25

30

35

40

45

50

gmndl

Roots.hs

{-# LANGUAGE BangPatterns, Rank2Types, ScopedTypeVariables, FlexibleContexts, v

 NoMonomorphismRestriction #-}
{-

gmndl ——- Mandelbrot Set explorer

Copyright (C) 2010,2011,2014 Claude Heiland-Allen <claude@mathr.co.uk>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
-}
module Roots (root2, root4, FF, lift) where
import Prelude hiding (zipWith)

import Data.Maybe (fromJust)
import Data.Functor ((<$>))

import Data.Vec (toList, solve, fromList, matFromLists, zipWith, Vec2, Mat22, »

& Vecd, Matd4, NearZero(nearZero))
import Data.Reflection (Reifies)
import Numeric.AD (jacobian’, auto)
import Numeric.AD.Mode. Reverse (Reverse)
import Numeric.AD. Internal.Reverse (Tape)
import Numeric.QD (QuadDouble())

lift = auto

type FF f g a = forall s. Reifies s Tape => f (Reverse s a) -> g (Reverse s a)

root2’ :: forall r . (Fractional r, NearZero r, Ord r) = r —> FF [] []
& Vec2 r -> Vec2 r
root2’ eps f !x = go x
where
jf = jacobian’ f
go x0 =
let (ys, js) = unzip $ jf (toList x0)
y = fromList (negate <$> ys) :: Vec2 r
j = matFromLists js :: Mat22 r

dx = fromJust $ solve j y
x1 = zipWith (4) x0 dx
in if all (not . (> eps)) (abs <$> ys)
then x0
else if all (not . (> eps)) (abs <$> toList dx)
then x1
else go x1

r —> 7

33

55

60

65

70

75

gmndl Setup.hs

root2 :: (Fractional r, NearZero r, Ord r) = r —> FF [] [] r —> [r] —> |[r]
root2 eps f = toList . root2’ eps f . fromList

rootd’ :: forall r . (Fractional r, NearZero r, Ord r) =1 > FF [] [] t —> V¥
& Vecd r —> Vecd 1
rootd’ eps f !x = go x
where
jf = jacobian’ f
go x0 =
let (ys, js) = unzip $ jf (toList x0)
y = fromList (negate <$> ys) :: Vecd r
j = matFromLists js :: Mat44 r
dx = fromJust $ solve j y

x1 = zipWith (4) x0 dx
in if all (not . (> eps)) (abs <$> ys)
then x0
else if all (not . (> eps)) (abs <$> toList dx)
then x1
else go x1

root4 :: (Fractional r, NearZero r, Ord r) = r -> FF [] [] r —> [r] > [r]
root4d eps f = toList . rootd’ eps f . fromList

instance NearZero QuadDouble where
nearZero x = not (abs x > 1le-60) —— NearZero Double has le-14

11 Setup.hs

import Distribution.Simple
main = defaultMain

34

