gruff-examples

Claude Heiland-Allen

20112016

10

15

Contents

1

dist

gitignore 2
gruff-examples.cabal L 2
LICENSE . . . 5
Setup.hs L e 11
src/Convert/Common.hs 11
sre/Convert /Grufflhs 12
sre/Convert/Gruff2ahs 12
sre/Convert /Gruff2.hs oL 13
sre/Convert/Gruf.hs L 14
src/gruff-convert.hs 15
sre/gruff-fiveshs . . . oL 15
sre/gruff-labels.hs . . o oL 16
sre/gruff-octopus.hs 18
sre/gruff-patterns.hs o 19
sre/gruff-randoms.hs L 20
sre/gruff-raytrace.hs oL 23
sre/gruff-whnhs .. oL 24
sre/gruff-zoom.hs . . oL 26
sre/Number.hs . . . oL 27
.gitignore

2 gruff-examples.cabal

Name: gruff —examples
Version: 0.4
Synopsis: Mandelbrot Set examples using ruff and gruff

Description:
Some example scripts, including a converter from old versions of gruff
file formats to the current file format.

License: GPL-2

License—-file : LICENSE

Author: Claude Heiland -Allen
Maintainer : claude@mathr. co.uk
Category : Graphics

Build -type: Simple

Cabal-version : >=1.6

20

25

30

35

40

45

50

55

60

65

70

gruff-examples

gruff-examples.cabal

Flag mpfr

description: use ’hmpfr’ for higher precision floating

default: False

Executable gruff-convert

Hs-source—dirs:
Main-1is:
Other-modules:

Build -depends:

GHC-options:

src

gruff -convert . hs
Convert . Common
Convert . Gruff

Convert . Gruffl
Convert . Gruff2a
Convert . Gruff2

base >= 4 && < 5,
filepath ,

ruff >= 0.4 & < 0.5,
gruff >= 0.4 & < 0.5
-Wall —-threaded -rtsopts

Executable gruff-labels

Hs-source—dirs:
Main—-is :
Build -depends:

GHGC-options:

src

gruff—-labels.hs

base >= 4 & < 5,
containers ,

gruff >= 0.4 & < 0.5,
ruff >= 0.4 & < 0.5
-Wall —-threaded -rtsopts

Executable gruff-octopus

Hs-source—dirs:
Main—-is :
Other-modules:
Build -depends:

if (flag(mpfr))
Build -depends:
CPP-options:
CC-options:

GHC-options:

Executable gruff-fives
Hs-source—dirs:
Main—-is :
Other-modules:

Build -depends:

if (flag(mpfr))
Build -depends:
CPP-options:

sTC

gruff —octopus. hs
Number

base >= 4 & < 5,
gruff >= 0.4 & < 0.5,
ruff >= 0.4 && < 0.5,
qd >= 1 & < 2,

qd-vec >= 1 & < 2,
Vec >= 1 & < 2

hmpfr >= 0.3.2 & < 0.4
-DHAVE MPFR
-DHAVEMPFR
-Wall —-threaded -rtsopts

src

gruff -fives.hs

Number

base >= 4 & < 5,
gruff >= 0.4 & < 0.5,
ruff >= 0.4 & < 0.5,
qd >= 1 & < 2,

qd-vec >= 1 & < 2,
Vec >= 1 & < 2

hmpfr >= 0.3.2 & < 0.4
-DHAVEMPFR,

point

75

80

85

90

95

100

105

110

115

120

125

gruff-examples

gruff-examples.cabal

CC-options:
GHC-options:

-DHAVEMPFR
—-Wall —threaded -rtsopts

Executable gruff-patterns

Hs-source—dirs:
Main—-1is :
Other-modules:
Build -depends:

if (flag(mpfr))
Build -depends:
CPP-options:
CC-options:

GHC-options:

src
gruff —patterns.hs
Number

base >= 4 & < 5,
gruff >= 0.4 & < 0.5,
ruff >= 0.4 & < 0.5,
qd >= 1 & < 2,

qd-vec >= 1 & < 2,
Vec >= 1 & < 2

hmpfr >= 0.3.2 & < 0.4
-DHAVEMPFR
-DHAVE MPFR
-Wall —-threaded -rtsopts

Executable gruff-randoms

Hs-source—dirs:
Main—-is :
Other-modules:
Build —-depends:

if (flag(mpfr))
Build —-depends:
CPP-options:
CC-options:

GHG-options:

Executable gruff-whn
Hs-source—-dirs:
Main—is :
Other-modules:
Build —-depends:

if (flag(mpfr))
Build -depends:
CPP-options:
CC-options:

GHC-options:

Executable gruff-zoom
Hs-source—-dirs:
Main-is:

Build -depends:

sTC
gruff -randoms. hs
Number

base >= 4 & < 5,
gruff >= 0.4 & < 0.5,
ruff >= 0.4 & < 0.5,
qd >= 1 & < 2,

qd-vec >= 1 & < 2,
Vec >= 1 & < 2,
random >= 1.0 & < 1.1

hmpfr >= 0.3.2 & < 0.4
-DHAVE MPFR
-DHAVE MPFR
-Wall —-threaded -rtsopts

src
gruff -whn. hs

Number

base >= 4 & < 5,

gruff >= 0.4 & < 0.5,

ruff >= 0.4 & < 0.5,

qd >= 1 & < 2,

qd-vec >= 1 & < 2,

Vec >= 1 & < 2,
data-memocombinators >= 0.4 && < 0.5

hmpfr >= 0.3.2 & < 0.4
-DHAVE MPFR
-DHAVEMPFR
—Wall —threaded -rtsopts

src
gruff —zoom. hs
base >= 4 & < 5,

130

135

140

10

15

20

25

30

35

40

gruff-examples LICENSE

gruff >= 0.4 && < 0.5
GHC-options: -Wall —threaded -rtsopts

source—-repository head
type: git
location: http://code.mathr.co.uk/gruff-examples. git

source—repository this

type: git
location: http://code.mathr.co.uk/gruff-examples. git
tag: v0.4

3 LICENSE

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software——to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it , that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

45

50

55

60

65

70

75

80

85

90

95

gruff-examples

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally , any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any

patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow .

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The ”Program”, below,
refers to any such program or work, and a ”"work based on the Program”
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in

the term ”"modification”.) FEach licensee is addressed as "you”.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted , and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it , in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it , thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any

100

105

110

115

120

125

130

135

140

145

150

155

gruff-examples

LICENSE

part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it , when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it ,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange;

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution , a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer , in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source

160

165

170

175

180

185

190

195

200

205

210

gruff-examples

LICENSE

code means all the source code for all modules it contains, plus any
associated interface definition files , plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void , and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty —free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

gruff-examples LICENSE

215 It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made

220 generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

225
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
230 certain countries either by patents or by copyrighted interfaces , the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
235 the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to

240 address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and ”any
later version”, you have the option of following the terms and conditions

245 either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

250 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals

255 of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

260 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

265 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

270 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

gruff-examples LICENSE

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

275 TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS) , EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

280 END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
285 possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively

290 convey the exclusion of warranty; and each file should have at least
the ”copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

295
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

300
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

305
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

310 Also add information on how to contact you by electronic and paper mail.

If the program is interactive , make it output a short notice like this
when it starts in an interactive mode:

315 Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.

320 The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than ‘show w’ and ‘show c¢’; they could even be
mouse—clicks or menu items--whatever suits your program.

325 You should also get your employer (if you work as a programmer) or your

school , if any, to sign a ”copyright disclaimer” for the program, if
necessary. Here is a sample; alter the names:

10

330

335

10

15

20

25

30

gruff-examples Setup.hs

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library , you may
consider it more useful to permit linking proprietary applications with the
library . If this is what you want to do, use the GNU Lesser General

Public License instead of this License.

4 Setup.hs

import Distribution.Simple
main = defaultMain

5 src/Convert/Common.hs

module Convert.Common (readMay, image, image’, Colour(Colour), Image()) where
import Data. List (sortBy)

import Data.Ord (comparing)

import Fractal .GRUFF

import Fractal .RUFF. Types.Complex (Complex ((:4)))

image :: Rational —-> Rational -> Double —> Image
image = image’ 512 288 4 (red, black, white)
where
red = Colour 1 0 0
black = Colour 0 0 0
white = Colour 1 1 1
image’ :: Int -> Int -> Double —> (Colour, Colour, Colour) —> Rational -> v
 Rational -> Double —> Image
image’ w h ss (ci, cb, ce) re im sz = Image
{ imageWindow = Window{ width = w, height = h, supersamples = ss }
, imageViewport = Viewport{ aspect = fromIntegral w / fromIntegral h, orient =v»
G 0}
, imageLocation = Location{ center = re :+ im, radius = sz }
, imageColours = Colours{ colourlnterior = ci, colourBoundary = cb, v
& colourExterior = ce }
, imageLabels = []
, imageLines = []
}
readMay :: Read a => String -> Maybe a

readMay s = case sortBy (comparing (length . snd)) . filter (all whiteSpace
& snd) . reads $ s of

(a, -):- —> Just a

_ —> Nothing

where
whiteSpace ’ > = True
whiteSpace ’'\t’ = True
whiteSpace ’\n’ = True
whiteSpace ’'\r’ = True
whiteSpace _ = False

z

11

gruff-examples src/Convert/Gruffl.hs

6 src/Convert/Gruffl.hs

module Convert.Gruffl (gruffl) where
import Convert.Common (readMay, image, Image)
import Numeric (readSigned, readFloat)

data AngledInternalAddress
= Unangled Integer
| Angled Integer Angle AngledInternalAddress
deriving Read

type Angle = Rational
newtype R = R Rational

instance Read R where
readsPrec _ = map (\(x, s) -—> (R x, s)) . readParen False (readSigned »
& readFloat)

data Gruffl = Gruffl
{ gAddress :: Maybe AngledInternalAddress
, glsland :: Maybe AngledInternalAddress
, gChild :: Maybe [Angle]
, gLowerAngle :: Maybe Angle
, gUpperAngle :: Maybe Angle
, gReal :: Maybe R
, glmag :: Maybe R
, gSize :: Maybe R
, gHueShift :: Maybe R
, gHueScale :: Maybe R
}

deriving Read

gruffl :: String —> Maybe Image
gruffl s = convert =<< readMay s

convert :: Gruffl -> Maybe Image

convert Gruffl{ gReal = Just (R re), glmag = Just (R im), gSize = Just (R sz) } »
& = Just $§ image re im (fromRational sz)

convert _ = Nothing

7 src/Convert/Gruff2a.hs

module Convert.Gruff2a (gruff2a) where
import Convert.Common (readMay, image’, Colour(Colour), Image())
import Numeric (readSigned, readFloat)

data AngledInternalAddress
= Unangled Integer
| Angled Integer Angle AngledInternalAddress
deriving Read

type Angle = Rational

newtype R = R Rational

12

15

20

25

30

35

40

10

15

20

gruff-examples src/Convert/Gruff2.hs

instance Read R where
readsPrec _ = map (\(x, s) -=> (R x, s)) . readParen False (readSigned v~
& readFloat)

data Color = Color Int Int Int
deriving Read

¢ :: Color —> Colour
¢ (Color r g b) = Colour (fromIntegral r / m) (fromlIntegral g / m) (fromIntegralv
- b / m) where m = 65535

data Gruff2a = Gruff2
{ gAddress :: Maybe AngledInternalAddress
, gReal :: Maybe R
, glmag :: Maybe R
, gSize :: Maybe R
, gRota :: Maybe Double
, gColours :: (Color, Color, Color)

deriving Read

gruff2a :: String -> Maybe Image
gruff2a s = convert =<< readMay s

convert :: Gruff2a —-> Maybe Image —-- FIXME handle rota?
convert Gruff2

{ gReal = Just (R re), glmag = Just (R im), gSize = Just (R sz)

, gColours = (ci, cb, ce)

} = Just $ image’ 512 288 4 (¢ ci, ¢ cb, ¢ ce) re im (fromRational sz)
convert _ = Nothing

8 src/Convert/Gruff2.hs

module Convert.Gruff2 (gruff2) where
import Convert.Common (readMay, image’, Colour(Colour), Image())
import Numeric (readSigned, readFloat)

data AngledInternalAddress
= Unangled Integer
| Angled Integer Angle AngledInternalAddress
deriving Read

type Angle = Rational
newtype R = R Rational
instance Read R where
readsPrec - = map (\(x, s) -=> (R x, s)) . readParen False (readSigned v~

 readFloat)

data Color = Color Int Int Int
deriving Read

¢ :: Color —> Colour

¢ (Color r g b) = Colour (fromIntegral r / m) (fromlIntegral g / m) (fromIntegralv
- b / m) where m = 65535

13

25

30

35

40

45

50

10

15

20

gruff-examples sre/Convert/Gruff.hs

data Window = Window{ width :: Int, height :: Int, supersamples :: R }
deriving Read

data Viewport = Viewport{ aspect :: R, orient :: R }
deriving Read

data Gruff2 = Gruff2
{ gAddress :: Maybe AngledInternalAddress
, gReal :: Maybe R
, glmag :: Maybe R
, gSize :: Maybe R
gRota :: Maybe Double

, gColours :: (Color, Color, Color)
, gWindow :: Window
, gViewport :: Viewport

}

deriving Read

gruff2 :: String —> Maybe Image
gruff2 s = convert =< readMay s

convert :: Gruff2 -> Maybe Image —— FIXME handle rota, orient, aspect?

convert Gruff2
{ gReal = Just (R re), glmag = Just (R im), gSize = Just (R sz)

, gColours = (ci, cb, ce)
, gWindow = Window{ width = w, height = h, supersamples = R ss }
} = Just $ image’ w h (fromRational ss) (¢ ci, ¢ cb, ¢ ce) re im (fromRationalv
& sz)
convert _ = Nothing

9 src/Convert/Gruff.hs

module Convert.Gruff (gruff) where
import Convert.Common (readMay, image, Image)
import Numeric (readSigned, readFloat)

data AngledInternalAddress
= Unangled Integer
| Angled Integer Angle AngledInternalAddress
deriving Read

type Angle = Rational
newtype R = R Rational

instance Read R where
readsPrec - = map (\(x, s) -—> (R x, s)) . readParen False (readSigned v~
 readFloat)

data Gruff = Gruff
{ gAddress :: Maybe AngledInternalAddress
, glsland :: Maybe AngledInternalAddress
, gChild :: Maybe [Angle]
, gLowerAngle :: Maybe Angle
, gUpperAngle :: Maybe Angle
, gReal :: Maybe R
, glmag :: Maybe R

14

25

30

10

15

20

25

10

gruff-examples

src/gruff-convert.hs

, gSize :: Maybe R
}

deriving Read

gruff :: String —-> Maybe Image
gruff s = convert =< readMay s

convert :: Gruff —> Maybe Image

convert Gruff{ gReal = Just (R re), glmag = Just (R im), gSize = Just (R sz) } =»

& Just $§ image re im (fromRational sz)
convert _ = Nothing

10 src/gruff-convert.hs

import Data.Maybe (mapMaybe)
import System.Environment (getArgs)
import System.FilePath ((</>), takeFileName)

import Convert.Common (Image)
import Convert.Gruff (gruff)
import Convert.Gruffl (gruffl)
import Convert.Gruff2a(gruff2a)
(

import Convert.Gruff2 (gruff2)
parsers :: [String -> Maybe Image]
parsers = [gruff2, gruff2a, gruffl, gruff]

main :: IO ()
main = do
args <- getArgs
case args of
odir: files@ (_:_) —> mapM_ (mainl odir) files
_ —> putStrLn ”usage: gruff-convert outdir/ *.oldformat.gruff”

mainl :: FilePath —> FilePath -> 10 ()
mainl odir file = do

old <- readFile file

case mapMaybe ($ old) parsers of

[] -> putStrLn $ ”Error: ‘7 44 file 4+ 7’ unrecognised”
[new] —> writeFile (odir </> takeFileName file) (show new)
_ -> putStrLn $ ”Error: ¢ ++ file ++ 7’ ambiguous”

11 src/gruff-fives.hs

import Data.Maybe (mapMaybe)

import Fractal .GRUFF

import Fractal .RUFF.Mandelbrot.Address (parseAngledInternalAddress)
import Fractal .RUFF. Mandelbrot.Atom (MuAtom (..), findAtom_)

import Fractal .RUFF. Types.Complex (Complex((:4)))

import Number (R)

main :: IO ()

main = defaultMain animation

15

15

20

25

30

35

40

45

50

55

60

gruff-examples

src/gruff-labels.hs

animation :: [(Image, FilePath)]
animation = mapMaybe scene score
scene String -> Maybe (Image, FilePath)
scene s = do
m <- findAtom. =<< parseAngledInternalAddress s
let cx :+ cy = muNucleus m :: Complex R
f = filename s
i = Image
{ imageLocation = Location
{ center = toRational cx :4+ toRational cy
, radius = muSize m * 16
}
, imageViewport = Viewport
{ aspect =1
, orient = muOrient m - pi / 2
}
, imageWindow = Window
{ width = 512
, height = 288
, supersamples = 8
}
, imageColours = Colours
{ colourInterior = Colour 1 0.75 0
, colourBoundary = Colour 0 0 0
, colourExterior = Colour 1 1 1
}
, imageLabels = []
, imageLines =[]
}
return (i, f)
filename :: String —-> FilePath
filename s = map filechar s 4++ ”.ppm”
where
filechar 7 7 = ’_7
filechar 7/’ = "=
filechar ¢ = ¢
score [String]
score =
[71 1/5 5 6 7 ++ accum deltas
| 1 <= [0 .. 124]
, let m =1 ‘div‘ b
, let n =1 ‘mod* 5 + 1
, let deltas = replicate m 5 ++ [n]
]
where accum = unwords . map show . scanl (+) 11

12 src/gruff-labels.hs

import
import

import
import

16

Fractal .GRUFF

Fractal .RUFF. Mandelbrot. Address hiding (angles)
Fractal .RUFF. Mandelbrot . Ray
Fractal .RUFF. Mandelbrot . Atom

gruff-examples src/gruff-labels.hs

import Fractal .RUFF. Types.Complex
import Fractal .RUFF.Types.Ratio hiding (Rational)

import Control.Monad (ap, replicateM)
import qualified Data.Map as M
import Data.Maybe (mapMaybe)

main :: 10 ()
main = defaultMain [(labels, ”gruff-labels.ppm”)]

labels :: Image
labels = Image
{ imageWindow = Window{ width = 1280, height = 720, supersamples = 8 }

, imageViewport = Viewport{ aspect =16/9, orient = 0 }
, imageLocation = Location{ center = (-0.1178) :+ 1.0413, radius = 0.125 }

, imageColours = Colours
{ colourInterior = red
, colourBoundary = black
, colourExterior = darkgrey
}
, imagelLabels = rayLabels ++ atomLabels
, imagelLines = rayLines
}
addressSpec :: [String]
addressSpec =
[71 1/3 7 4++ (unwords . map show . scanl (4) (3 :: Int)) steps
| n < [1 .. 3]

, steps <- replicateM n [1,2,3]

]

addresses :: [AngledInternalAddress]
addresses = mapMaybe parseAngledInternalAddress addressSpec
atoms :: [(AngledInternalAddress, MuAtom Double)]
atoms = mapMaybe (\addr -> fmap ((,) addr) (findAtom_. addr)) addresses
angles :: [(AngledInternalAddress, MuAtom Double, Angle, Angle)]
angles = mapMaybe f atoms
where
f (addr, mu) = fmap g (externalAngles addr)
where

g (lo, hi) = (addr, mu, lo, hi)

atomLabels :: [Label]
atomLabels =
[Label
{ labelCoords = toRationalC (muNucleus mu)
, labelColour = white
, labelText = prettyAngledInternalAddress addr
}
| (addr, mu, -, _) <— angles

]

rayLabels :: [Label]
rayLabels =
[Label

17

65

70

75

80

85

90

95

10

15

gruff-examples src/gruff-octopus.hs

{ labelCoords
, labelColour
I

| (-, -, lo, hi) <- angles

, (a, k) <= [(lo, 10), (hi, 11)]

]

fst . (!! (sharpness x k)) $ rays M.! a
lightgrey , labelText = prettyAngle a

rayLines :: [Line]
rayLines =
[Line{ lineSegments = rs, lineColour = midgrey }

| rs <- M.elems rays

]

rays :: M.Map Angle [(Complex Rational, Complex Rational)]
rays = M. fromList [(a, ray a) | (-, -, lo, hi) <- angles, a <- [lo, hi]]

ray :: Angle —-> [(Complex Rational, Complex Rational)]
ray = (zip ‘ap‘tail)
map toRationalC
take (sharpness x 32)
externalRay le-8 sharpness (2%%24)
(\t —=> toRational (numerator t) / toRational (denominator t))

sharpness :: Int
sharpness = 8
red, black, darkgrey, midgrey, lightgrey , white :: Colour

red = Colour 1 0 0

black = Colour 0 0 0

darkgrey = Colour 0.25 0.25 0.25
midgrey = Colour 0.5 0.5 0.5
lightgrey = Colour 0.75 0.75 0.75
white = Colour 1 1 1

toRationalC :: Complex Double —> Complex Rational
toRationalC (x :+ y) = toRational x :4+ toRational y

13 src/gruff-octopus.hs

import Data.Maybe (mapMaybe)
import Numeric.QD (QuadDouble)
import Numeric.QD.Vec ()

import Fractal .GRUFF

import Fractal .RUFF. Mandelbrot.Address (parseAngledInternalAddress)
import Fractal .RUFF. Mandelbrot.Atom (MuAtom (..), findAtom_)

import Fractal .RUFF. Types.Complex (Complex((:4)))

main :: IO ()

main = defaultMain animation

animation :: [(Image, FilePath)]

animation = mapMaybe scene (score ‘zip‘ [0..])
scene :: (String, Int) -> Maybe (Image, FilePath)
scene (s, n) = do

18

20

25

30

35

40

45

50

10

15

gruff-examples src/gruff-patterns.hs

m <- findAtom. =<< parseAngledInternalAddress s
let cx :+ cy = muNucleus m :: Complex QuadDouble

f = filename n
i = Image
{ imageLocation = Location
{ center = toRational cx :4+ toRational cy
, radius = muSize m * 16
}
, imageViewport = Viewport
{ aspect =1
, orient = muOrient m - pi / 2
}
, imageWindow = Window

{ width = 256
, height = 256

, supersamples = 8
}
, imageColours = Colours
{ colourInterior = Colour 1 0 0
, colourBoundary = Colour 0 0 0
, colourExterior = Colour 1 1 1
}
, imageLabels = []
, imageLines =]
}
return (i, f)
filename :: Int -> FilePath
filename n = (reverse . take 2 . (++ 700”) . reverse . show) n ++ ”.ppm”
score :: [String]
score =
[71 7 4+ show k ++ 7/29 7 44 (unwords . map show) [30 .. 38 :: Int]

| k<- [1 .. 28] + [27, 26 .. 2 :: Int]
]

14 src/gruff-patterns.hs

import Control.Monad (replicateM)

import Data.Maybe (mapMaybe)

import Data.Ratio (numerator, denominator, (%))
import System.Environment (getArgs)

import Fractal .GRUFF

import Fractal .RUFF.Mandelbrot.Address (parseAngledInternalAddress)
import Fractal .RUFF. Mandelbrot.Atom (MuAtom (..), findAtom_)
import Fractal .RUFF. Types.Complex (Complex((:4)))

import Number (R)

main :: I0 ()
main = do
args <- getArgs
case map reads args of
[[(num, "™)], [(den, "")], [(depth, "")]] —>
defaultMain (animation (num % den) (fromIntegral depth))

19

20

25

30

35

40

45

50

55

60

65

gruff-examples

src/gruff-randoms.hs

- —> putStrLn ”usage: gruff-patterns num den depth | gruff”
animation :: Rational —> Int —-> [(Image, FilePath)]
animation r d = mapMaybe scene (score r d)
scene :: String -> Maybe (Image, FilePath)
scene s = do

m <- findAtom. =<< parseAngledInternalAddress s
let cx :+ cy = muNucleus m :: Complex R
f = filename s
i = Image
{ imageLocation = Location
{ center = toRational cx :+ toRational cy
, radius = muSize m * 16
}
, imageViewport = Viewport
{ aspect =1
, orient = muOrient m - pi / 2
}
, imageWindow = Window
{ width = 256
, height = 256
, supersamples = 16
}
, imageColours = Colours
{ colourInterior = Colour 1 0 0
, colourBoundary = Colour 0 0 0
, colourExterior = Colour 1 1 1
}
, imageLabels =]
, imageLines =[]
}
return (i, f)
filename :: String —-> FilePath
filename s = map filechar s 4++ ”.ppm”
where

filechar 7> ' = ’_"

filechar 7/’ = 7=

filechar ¢ = ¢
score :: Rational —> Int —> [String]
score r n =

[717 4+ nr ++ 7/” ++ dr ++ 7 7 ++ accum deltas
| deltas <- replicateM n [1 .. denominator r - 1]
]

where

nr = show (numerator r)

dr = show (denominator r)

accum = unwords . map show . scanl (4) (denominator r)

15 src/gruff-randoms.hs

import GHC.Conc (numCapabilities)

import Control.Concurrent (forkIO, Chan, newChan, getChanContents, writeChan)

import Control.Monad (forM.)
import Data.Function (on)

20

10

15

20

25

30

35

40

45

50

55

60

gruff-examples

src/gruff-randoms.hs

import Data.List (nub, nubBy, unfoldr)
import System.Environment (getArgs)
import System.Random (newStdGen, RandomGen, random, randomR,

import Fractal .GRUFF

import Fractal .RUFF.Mandelbrot. Address
(AngledInternalAddress (..), angledToList, angledFromList
, prettyAngledInternalAddress
)
import Fractal .RUFF. Mandelbrot.Atom (MuAtom(..), findAtom_)
import Fractal .RUFF. Types.Complex (Complex((:4)))
import Fractal .RUFF. Types.Ratio (denominator, (%))

import Number (R)

main :: I0 ()
main = do
args <- getArgs
case args of
[ns] —> case reads ns of
[(n, "7)] => do
gs <- unfoldr (Just . split) ‘fmap‘ newStdGen
ch <- newChan
forM_ ([0..] ‘zip‘ take numCapabilities gs) $ forkIO
let unique = nubBy ((==) ‘on‘ snd)

f ((i, -), a) = (i, toFileName (prettyAngledInternalAddress a))
defaultMain . take n . map f . unique =<< getChanContents ch

_ —> usage
- —> usage
where
usage = putStrLn ”usage: gruff-randoms count | gruff”
toFileName :: String —-> String

toFileName = (++ ”.ppm”) . map toFileChar

toFileChar :: Char —> Char
toFileChar 7/’ = "=~
toFileChar > ' = ’_’
toFileChar ¢ = ¢

type Message = ((Image, FilePath), AngledInternalAddress)

worker :: RandomGen g => Chan Message —> (Int, g) -> 10 ()
worker ch (w, g) =

mapM_ (uncurry $ work ch w) . zip [0..] . nub . randomAddresses $ g
work :: Chan Message —> Int —> Int —> AngledInternalAddress —> 10 ()
work ch w n a = case scene n a of

Nothing -> return ()

Just (i, f) —> writeChan ch ((i, show w4+ "_." 4++ f), a)
scene :: Int —> AngledInternalAddress -> Maybe (Image, FilePath)
scene n a = do

a’ <- (angledFromList . angledToList) a
m <- findAtom_ a’
let cx :+ cy = muNucleus m :: Complex R

split)

worker ch

21

65

70

75

80

85

90

95

100

105

110

115

gruff-examples

src/gruff-randoms.hs

f = filename n
i = Image
{ imageLocation = Location
{ center = toRational cx :4+ toRational cy
, radius = muSize m * 32
}
, imageViewport = Viewport
{ aspect =1
, orient = muOrient m - pi / 2
}
, imageWindow = Window

{ width = 512
, height = 512

, supersamples = 8
}

, imageColours = Colours
{ colourInterior = Colour
, colourBoundary = Colour
, colourExterior = Colour
}

, imageLabels =[]

, imageLines =[]

}

return (i, f)
filename :: Int -> FilePath

filename n = (reverse . take 4 . (++ 700007)

10
00
11

= o O

reverse . show) n ++ ”.ppm

”

randomAddresses :: RandomGen g => g -> [AngledInternalAddress]
randomAddresses g = let (g’, a) = randomAddress g in a : randomAddresses g’

randomAddress :: RandomGen g => g —> (g,
randomAddress g = randomAddress’ g 16 2 1

randomAddress’

AngledInternalAddress)

RandomGen g => g —-> Int -> Integer -> Integer -> (g, AngledInternalAddress)
randomAddress’ g0 size _den per | size =— 0 || per > 100 = (g0, Unangled (v

& fromInteger per))
randomAddress’ g0 size den per
| coin < (0.125 :: Double) && den’ >
if per’ > 200

2 =

then (g6, Unangled (fromlInteger per))

else Angled (fromInteger per) angle

& den’ per’

| otherwise = Angled (fromInteger per)

- — 1) den per2

g2
g3

(1 % 2)

where
(coin, gl) = random g0
(rand, g2) = random gl
(numr, g3) = randomR (1, denr - 1)
(poff, g4) = randomR (1, den - 1)
(per’, gb) = randomR (perMin, perMax) g4

(per’’, g6) = randomR (perMin’, perMax’) g5

per2 = if den > 2 then per 4+ poff else per

denr = floor (31 % rand * rand + 2
angle = numr % denr
den’ = denominator angle

22

’

Double)

‘fmap‘ randomAddress’ g6 (size - 1) v

‘fmap ¢ randomAddress’ g6 (size v

gruff-examples src/gruff-raytrace.hs

perMin = per % (den’ - 1) - 1
perMax = (per + 1) * den’ - 1
perMin’ = per + 1
perMax’ = per x 2

16 src/gruff-raytrace.hs

import Control.Monad (ap)

import Data.Ratio ((%))

import System.Environment (getArgs)
import Fractal .GRUFF

main :: 10 ()

main = do
[scount , snum, sden] <- getArgs
let count = read scount
num = read snum
den = read sden

angle = num % den
callback = RayTraceForwardCallback $ \continue ¢ _ —>
let x :+ y = toComplex c¢
in (if magnitudeSquared ¢ < 4 then ((toDFloat x :+ toDFloat y) :) elsev
G id)
(rayTraceForward continue callback)
ray = rayTraceForward (rayTraceForwardStart (ExternalAngle angle)) v
& callback
defaultMain . map scene . zip [0..] . (zip ‘ap‘tail) . take count $ ray

scene (n, (cx0 :+ cy0, cx1 :+ cyl)) =
withDFloat ¢x0 $ \x0’ -> withDFloat cy0 $ \y0’ —>
withDFloat ¢x1 $ \x1’ -> withDFloat cyl $ \yl —>

let x0 = auto x0’
y0 = auto y0’
x1 = auto x1’

c0 = x0 :+ yO
cl = x1 4+ yl

d=cl - c0
center’ = 0.5 % (c0 + cl)
radius’ = 0.5 ‘min‘ (128 * auto (magnitude d) :: F24)
orient ’ = phase (fmap realToFrac d :: Complex Double) - pi / 2
in (Image{ imageLocation = Location
{ center = fmap toRational center’
, radius = toRational radius’
}
, imageViewport = Viewport
{ aspect = 512/288
, orient = orient’

}

, imageWindow = Window
{ width = 512
, height = 288

, supersamples = 0.5
}

, imageColours = Colours
{ colourInterior = Colour 1 0 0
, colourBoundary = Colour 0 0 0
, colourExterior = Colour 1 1 1

23

50

55

10

15

20

25

30

35

40

45

gruff-examples

src/gruff-whn.hs

k]

I

}

imageLabels
imageLines

, filename n)

filename n = (reverse

17

{,

Music video for:

take 5

src/gruff~-whn.hs

(++ 700000”)

B1t Crunch3r vs Killeralien vs Phonetic System
White Hole Nocturne (Feat. Jay Cotton)
Planet Terror Records planet015 #03

reverse

speed up audio by 2.0408% from 140bpm to 142.857bpm
video at 25fps

-}

import
import
import

import
import
import

import

import

data Quality = Preview

Data.Maybe (mapMaybe)
Data.MemoCombinators (list , char)
System . Environment (getArgs)

Fractal .GRUFF

Fractal .RUFF. Mandelbrot. Address (parseAngledInternalAddress)

Fractal .RUFF. Mandelbrot . Atom (MuAtom(..) , findAtom_)
Fractal .RUFF. Types.Complex (Complex((:+)))

Number (R)

main 10 ()
main = do
args <- getArgs
let q = case args of

window
window
window
window
window
window

animation

[q’] —> case reads q’

[(q777 7777)] S q77
_ —> Preview
- —> Preview
defaultMain (animation q)

Quality —> Window

Preview =
P288 =
P576
P720
P1080 =

Window {
Window {
Window {
Window {
Window {

width
width
width
width
width

Quality —> [(Image,

animation q = mapMaybe (scene q)

scene

24

| P288 | P576 | P720 |

of

512, height
512, height
1080, height
1280, height
1920, height
String) |
(score ‘zip*

P1080 deriving Read

[0..

288,
288,
576,
720,
1080,

1)

supersamples
supersamples
supersamples
supersamples
supersamples

Quality —> (String, Int) —-> Maybe (Image, FilePath)

=N o

show) n ++ ”.ppm

N Ot

”

S s e]

50

55

60

65

70

75

80

85

90

95

gruff-examples

src/gruff-whn.hs

scene q (s, n) = do
m <- findMu s
let cx :+ ¢y = muNucleus m
f = filename n
i = Image

{ imageLocation = Location
{ center = toRational cx :4+ toRational cy
, radius = muSize m * 8
}

, imageViewport = Viewport
{ aspect = aspectQ q
, orient = muOrient m - pi / 2
}

, imageWindow = window q

, imageColours = Colours
{ colourInterior = Colour 1 0 0
, colourBoundary = Colour 0 0 0
, colourExterior = Colour 1 1 1
}

, imageLabels =[]

, imageLines =[]

return (i, f)

findMu String —> Maybe (MuAtom R)
findMu = list char findMu’

findMu’ String —> Maybe (MuAtom R)
findMu’ s = do

a <- parseAngledInternalAddress s
findAtom_ a

aspectQ Quality —> Double

aspectQ q = let w = window q in fromIntegral (width w) / fromIntegral (height w)

filename Int -> String
filename n = (reverse take 4 (++
kickl, snarel, kick2, snare2, kick3,
bass3 Int —> Int -> [String]
kickl n = 71 27 ++ (unwords
 repeat) 1 | m<- [n, n - 1 ..
snarel n = [71 27 ++ (unwords
& ‘mod‘ 3 /= 0)) [(3 Int) ..]
kick2 n=1[712" ++ (unwords

& repeat) 2 | m<- [n, n -1

snare2 n = [71 2 3”7 44 (unwords
G ‘mod‘ 4 /= 0)) [(4 Int) ..]

kick3 n= "1 2 4 8 ” ++ (unwords
 repeat) 4 | m<- [n, n - 1 ..

snare3 n = [71 2 3 4 7 4+ (unwords
G ‘mod‘ 5 /= 0)) [(5 Int) ..]

bass3 n k= [71 2 47 ++ show k ++
& :: Int) ..] | m<- [n, n—-1

score [String]

score = concat $

70000") reverse
snared3 Int —>
map show take
1]]

map show take
| m <- [n, n -1
. map show take
1]]

map show take
| m <- [n, n -1
. map show take
1]]

map show take
| m<- [n, n -1

1]

”

show) n ++ ”.ppm
[String]
m . scanl (+) (3 Int) .v
(2 * m) filter (\x —> x ¢
rr‘ll 1lcinl (+) (5 Int) .v
(3 * m) filter (\x —> x ¢
n.1' 1ice]mnl (+) (10:: Int) .v»
(4 * m) filter (\x —> x ¢

Iilnp]show take m) [(23v

7 /7 7 4++ (unwords

25

100

105

110

115

120

125

130

135

140

145

150

gruff-examples

src/gruff-zoom.hs

26

kickl 21
snarel 32
kickl 20
snarel 11
kickl 8
kickl 8
kick1l 5
snarel 32
kickl 20
snarel 11
|'_

kick2 21
snare2 32
kick2 20
snare2 11
kick2 21
snare2 32
kick2 10
snare2 8
snare2 8
snare2 5
_l__‘l_

kick3 21
snared 32
kick3 15
snared 5
snared 11
kick3 4
bass3 4
kick3 8
kick3 5
snared 32
kick3 16
bass3 5
snared 4
bass3 3
snared 3
_|__|_

kick3 21
snarel 32
kick2 20
snared 11
kick1l 8
kick?2 5
bass3 3
kick3 5
snare2 6
bass3 26
kick2 16
bass3 5
snare3d 5
snare2 3
snarel 2

src/gruff-zoom.hs

10

15

10

15

20

25

30

gruff-examples src/Number.hs

import System.Environment (getArgs)
import Fractal .GRUFF

main :: I0 ()
main = do
[fn, nfs] <- getArgs
i0 <- read ‘fmap‘ readFile fn

let nf = read nfs
r0 = 4
rl = radius (imageLocation i0)
dr = rl / r0
zoom f =
let t = fromIntegral f / fromIntegral (nf - 1)
r =10 % dr *x t
in i0{ imageLocation = (imageLocation i0){ radius =r } }
name = (++ ”.ppm”) . reverse . take 8 . (++ 700000000”) . reverse . show
defaultMain [(zoom f, name f) | f <- [0 .. nf - 1]]

19 src/Number.hs

{-# LANGUAGE CPP, GeneralizedNewtypeDeriving #-}
module Number (R) where

import Data.Vec (NearZero)
#ifdef HAVE_PRECISION

#else
#ifdef HAVEMPFR

import Data.Vec (nearZero)

import Control.Monad (guard)

import Data.Ratio (numerator, denominator)
import Numeric (readSigned)

import Data.Number . MPFR (MPFR, RoundMode(Near, Up), Precision, getPrec, int2w, v

& fromIntegerA , stringToMPFR_, toString)
import Data.Number MPFR. Instances.Near ()

#else

import Numeric.QD (QuadDouble)
import Numeric.QD.Vec ()

#endif
#endif

#ifdef HAVEMPFR

instance NearZero MPFR where

nearZero x = let p = getPrec x in not (abs x > int2w Up p 1 (4 - fromlIntegral v

S p))

newtype R = R MPFR
deriving (Eq, Ord, Floating, Real, RealFrac, NearZero)

instance Num R where

35

40

45

50

55

60

65

70

gruff-examples src/Number.hs

Ra+Rb=R (a+ b)
Ra*xRb=R (ax*xb)
Ra-Rb=R (a-bh)
negate (R a) = R (negate a)
abs (R a) = (abs a)
signum (R a) = R (signum a)

fromInteger i = R (fromIntegerA Near bits i)

instance Fractional R where
Ra/Rb=R(a/ Db)
recip (R a) =R (recip a)

fromRational r = R (fromIntegerA Near bits (numerator r) / fromIntegerA Near v

& bits (denominator r))

instance Read R where
readsPrec _ = readParen False . readSigned $ \s -> do
(f, r) <= lex s
let (n, k) = stringToMPFR_ Near bits 10 f
guard (k = 0)
return (R n, r)

instance Show R where

show (R m) = toString (ceiling $ (2::Double) + log 2 / log 10 x fromIntegral (v

& getPrec m)) m

bits :: Precision
bits = 1000
#else

newtype R = R QuadDouble
deriving (Eq, Ord, Num, Fractional, Floating, Real, RealFrac, NearZero)

instance Show R where
show (R m) = show m

instance Read R where
readsPrec p = map (\(m, s) -—> (Rm, s)) . readsPrec p

#endif

28

