gulcii

Claude Heiland-Allen

2010-2019

Contents

0 O UL Wi

doc/encoding.md 3
doc/encoding.tex 12
doc/evaluation.tex 12
doc/.gItignore 22
doc/Makefile 22
doc/visualisation.png 22
extra/gulciim.pd 22
extra/gulcii.pd L 23
extra/gulciiv.pdo 23
extra/start.sh L 25
gitignore . .. L 25
gulcii.cabal L 25
Lib/bits.gu . . o o 27
lib/bool.gu. . . . o o 27
lib/church.gu 27
lib/edinburgh.gu L 28
lib/either.gu L 29
lib/function.gu 29
Lb/list.gu . . oo 29
lib/maybe.gu 30
lib/natural.gu 30
lib/pair.gu 31
lib/prelude.gu 31
LICENSE . . . 31
README.md 37
Setup.his . . . o 39
sre/Bruijnhs .o 39
sre/Command.his 40
ste/Draw.his © ..o 41
sre/Evaluationhso L 44
ste/GOhS .« . 44
sre/Graph.his .o L 46
sre/Lambdahs ... oo 47
sre/Layout.hs o L 48
sre/Mainhs © oo o 50
ste/Meta.hs © . oL 56
sre/Parseis . . oL 57
src/Reducehs . .o o oo 60
sre/Setting.hso 62
sre/Sugarhs 64
stack-10-b.yaml oL 66

10

15

20

25

30

35

40

45

50

55

gulcii

doc/encoding.md

1 doc/encoding.md

Lambda calculus encodings
Notation
Backslash is used for lambda:

* easier to type
x familiar from Haskell

Neighbouring lambdas can be combined with one backslash:
\absz.as (bs z)

Corresponds to:

\a. \b. \s. \z. a s (b s z)

Church and Scott encodings

% encode data as lambda terms
* continuation passing style
* Church folds vs Scott case analysis

Continuation passing style
the datum is a black box that knows itself

the datum is passed functions that it calls with its deconstruction
the datum has one argument per constructor

S G S

each continuation has one argument per constructor argument

Simple types

Church and Scott encoding coincide for simple types.

Bool
Haskell :
data Bool
= False

| True

Church, Scott:

true =\t f . ¢t
false =\t . f

and = \a b . aba
or =\ab . aab
not = \a . a false true

60

65

70

75

80

85

90

95

100

105

110

gulcii

doc/encoding.md

The datum ”true” takes two arguments, and returns the first , which (by

convention) denotes the value True.

Pair
Haskell :

data Pair a b
= Pair a b

Church, Scott:

pair = \a bp . pab

fst =\p . p (\a b . a)
snd =\p . p (\ab . b)

The datum ” pair x y” takes one argument, which is a function of two arguments,

”

and passes it the stored values of ”x

Maybe
Haskell:
data Maybe a
= Nothing

| Just a

Church, Scott:

nothing = \n j . n
just =\amnij . ja
maybe = \n jm . mn j
Either
Haskell :

data Either a b
= Left a
| Right b

Church, Scott:

left =\a lr
right =\b 1 r

- —
T

either =\l r e . el r

Recursive types

* Church and Scott encoding differ for

and 77y77 .

recursive types.

gulcii doc/encoding.md

* Church encoding uses folds.

115
The deconstruction continuation threads throughout
the structure.
* Scott encoding is similar to case analysis.
120

The deconstruction continuation
unwraps one layer of constructors only.

125 ## Natural numbers

Haskell :
data Nat
130 = Zero
| Succ Nat
Church:
135 zero = \s z . z
succ =\n s z . s (ns z)
Scott:
140 zero = \s z . z
succ = \n s z . s n

Nat examples

145
Haskell :
Zero, Succ Zero, Succ(Succ Zero), Succ(Succ(Succ Zero))
150 Church, applying the same ”s” ”"n” times at once:
\s z z
\s z S z
\s z s (s z)
155 \s z s (s (s 2z))
Scott , applying different ”s” ”"n” times separately:
\'s
160 \'s ()

_—
o2]

N N N N
»w n »m N
—

—
»n wn w
N N N

s (\s z . z))
s \sz .s (\sz.12)))

165 ## Church Nat succ

zero = \s z . z
succ = \n s z . s (n s z)

170

175

180

185

190

195

200

205

210

215

220

225

gulcii doc/encoding.md
succ zero
= {- definition of succ -}
(\n's z . s (ns z)) zero
= {- beta -}
\s z . s (zero s z)
= {- definition of zero -}
\s z . s ((\s z . 2) s z)
= {- beta -}
\s z . s ((\z . z) z)
= {- beta -}
\s z . s z
= {- definition of one -}
one
Scott Nat succ
zero = \s z . z
succ = \n s z . s n

succ zero

= {—
(\
= {7
\'s
= {—
\'s
= {—

definition of succ -}
ns z . s n) zero

beta -}

Z . S zero

definition of zero -}

z . s (\s z . z)

definition of one -}

one

Nat arithmetic

Church :

add
mul
exp

Scott, o

add
mul
exp

Scott, closed terms with ‘fix

= \mn . m succ n
=\mn . m (add n) zero
\mn . nm

pen terms with ‘letrec ‘:

\mn . m (\p . succ (add p n)) n
=\mn .m (\p . add n (mul p n)) zero
= \m n n (\p . mul m (exp m p)) one

[N

add = fix (\add . \mn . m (\p . succ (add p n)) n)
mul = fix (\mul . \mn . m (\p . add n (mul p n)) zero)
exp = fix (\exp . \mn . n (\p . mul m (exp m p)) one)
Fixed point combinator
Semantics:
fix f =f (fix f)

gulcii doc/encoding.md

Implementation:

230 AN (\x - f (xx)) (\x . f (x x))

What it computes:

* The unique least fixed point under the definedness order.

235
% Allows recursive functions to be defined as closed terms.
Nat predecessor
240
Church (courtesy Wikipedia):
pred =\n f x . n (\gh . h (gf)) \u.x) (\v.v)
245 Scott:

pred

I
_—
B
=]
—
=
kel
o
N
®
I
©]

250 ## Nat conversion
Church arithmetic is more concise (and doesn’t need ‘fix ‘).

Scott predecessor is comprehensible.

255
Mix and match?
churchToScott = \n . n scottSucc scottZero
260 scottToChurch = \n . n
(\p . churchSucc (scottToChurch p))
churchZero
scottToChurch = fix (\scottToChurch . \n . n
265 (\p . churchSucc (scottToChurch p))
churchZero)
Nat subtract and equality
270
Church:
sub = \m n . n pred m
275 Scott:
sub = \mn . m
(A\p - n (A\q . sub p q) m)
zero
280 equal = \mn . m

(A\p - n (\q . equal p q) false)
(n (\q . false) true)

285

290

295

300

305

310

315

320

325

330

335

340

gulcii

doc/encoding.md

Unwrap a layer of constructor from each number and recurse.

There is a different ‘equal‘ for booleans:

equalBool = \a b . a b (not b)

List
Haskell :
data List a

= Nil
| Cons a (List a)

Church:

nil =\cn . n

cons = \x xs ¢n . ¢ x (xs ¢ n)
Scott:

nil =\cn . n

cons = \x Xs ¢ n . Cc X XS

List operations
Church, Scott:

isnil = \1
head = \1

(\x xs . false) true
(\x xs . x) error

Church (‘tail ¢ courtesy Wikipedia):

length = \1 . 1 (\x xs . succ xs) zero
tail =\l cn . 1
(\x xs g . gx (xs ¢)) (\xs . n) (\x xs . xs)

Scott:
length = \1 . 1 (\x xs . succ (length xs)) zero
tail = 1\1 . 1 (\x xs . xs) nil

More Scott functions
compose = \f g x . f (g x)

fold =\f el . 1 (\x xs . f x (fold f e xs)) e

sum = fold add =zero

ands = fold and true

ors = fold or false

map = \f . fold (compose cons f) nil
all = \f . compose ands (map f)

345

350

355

360

365

370

375

380

385

390

395

gulcii

doc/encoding.md

any = \f . compose ors (map f)

take = \n 1. n(\p. 1 (\x xs. cons x (take p xs))nil)nil
drop = \n I. n(\p. 1 (\x xs. drop p xs) nil) 1

iterate = \f x . cons x (iterate f (f x))
How to perform lambda calculus

How to perform lambda calculus
* single step graph reduction

* visualisation of current state

* sonification of changes in state

* open terms vs closed terms

Graph reduction

data Term

= Free String

| Reference Integer

| Bound —— de Bruijn index 0

| Scope Term —— see Lambdascope paper
| Lambda Strategy Term
| Apply Term Term

reduce
Definitions —— Map String Term
—> References —— Map Integer Term
—> Term

-> Maybe (References, Term)

Three kinds of Lambda
* strict (syntax inspired by Haskell ’s —XBangPatterns):
(\v ! s) t
t is fully reduced before substitution into s.
* copy:
(\v 7 s) t
t is substituted for each occurrence of v in s.
* lazy:

(\v . s) t

gulcii doc/encoding.md

a new ‘Reference‘ is created for t, and substituted into s.

400 ‘reduce ‘* reduces xinsidex the ‘References‘ until it is irreducible, at which

point the ‘Reference‘ is replaced with the ‘Term‘ it refers to.

Visualisation
405
'[](visualisation .png){width=100%}\
Sonification
410 x count number of nodes of each type
% statistics are forwarded to a Pure-data patch
x changes in each count control a harmonic (one for each type of node) in a
415 simple phase modulation synth
Open terms
420 x free variables looked up on demand from environment

x allows definitions to be changed at runtime

* easier to write
425

Drawbacks of open terms
* no sharing
430
subterms can be evaluated many times due to duplication

x exponential work (worst case)

435 x exponential space (worst case)

Fixed points
440 x closed terms with fixed point combinators
* allows evaluation to be shared

* sharing can be vital for efficiency
445

Future work

450 ## Better Evaluator
* current evaluator is still somewhat ad-hoc and doesn’t preserve sharing

% previous evaluator even had correctness bugs

10

455

460

465

470

475

480

485

490

495

500

505

510

gulcii doc/encoding.md

* switch to using Lambdascope (or similar) as a library?

Auto Fix

Automatically translating open terms to use fixed point combinators:

* recursive functions can use ‘fix ¢

x* mutually recursive functions can use ‘fix ¢ combined with tuples

many = some ‘orElse ‘ none

some = one ‘andThen‘ many
becomes :

manysome = fix (\p —> pair

(snd p ‘orElse ‘ none)
(one ‘andThen‘ fst p))

many = fst manysome
some = snd manysome
Magic It

* refer to previously evaluated terms

* including the currently evaluating term
* without restarting evaluation

Haskell example (‘ghci-8.0.1):

3

it + 5

it = 2

=V oV wV

Further Performances / Project Ideas

* 7An infinite deal of nothing”, a variety of non-terminating loops each with
their own intrinsic computational rhythm.

x Implement in untyped lambda calculus an interpreter for a known
Turing—complete tape mutation based language and run some simple programs

in it.

Illustrates Turing—completeness of untyped lambda calculus, albeit slowly.

EOF
EOF

Thanks!

11

gulcii doc/encoding.tex

Questions?

https://mathr.co.uk
515 mailto:claude@mathr. co.uk

https://hackage. haskell.org/package/gulcii
https://code.mathr.co.uk/gulcii

2 doc/encoding.tex

\documentclass [aspectratio=43]{beamer}
\usepackage{lmodern}
\usepackage [utf8]{inputenc}
\usepackage [T1]{ fontenc}
5 \DeclareUnicodeCharacter {03BB}{\(\lambda\)}
\AtBeginSection []{\ begin{frame}\ frametitle{Outline}\tableofcontents[v
& currentsection]\end{frame}}
\def\tightlist {}

\definecolor {mathr}{RGB}{128,64,64}

10 \setbeamercolor{structure }{fg=mathr}
\setbeamercolor{title }{fg=mathr}
\setbeamercolor{titlelike }{fg=mathr}
\beamertemplatenavigationsymbolsempty

15 \renewcommand{\familydefault}{\sfdefault}

\title [GULCII|{ Graphical\\ Untyped Lambda Calculus\\ Interactive Interpreter}
\subtitle {(GULCII) }
\author{Claude Heiland-Allen}

20 \institute{\url{https://mathr.co.uk} \\ \url{mailto:claude@mathr.co.uk}}
\date [Ed 2017]{Edinburgh, 2017}
\subject {Computer Science}

\begin{document }
25
\begin{frame} \titlepage \end{frame}
\begin{frame} \frametitle{Outline} \tableofcontents \end{frame}

\input{encoding .md. tex}

30
\end{document}

3 doc/evaluation.tex

% note: much of this document is out of date
\documentclass|[aspectratio=149]{beamer}
\AtBeginSection []{\ begin{frame}\ frametitle {GULCII}\tableofcontents v
& currentsection]\end{frame}}
\usepackage{listings}
\title [GULCII|{ Graphical\\ Untyped Lambda Calculus\\ Interactive Interpreter}

\subtitle {(GULCII) }
10 \author{Claude Heiland-Allen}

12

15

20

25

30

35

40

45

50

55

60

gulcii doc/evaluation.tex

\institute{\url{https://mathr.co.uk} \\ \url{mailto:claude@mathr.co.uk}}
\date [Ed 2017]{Edinburgh, 2017}
\subject {Computer Science}

\begin{document }

\begin{frame} \titlepage
\end{frame}

\section [bruijn]|{De Bruijn Indexing}

\begin{frame} \frametitle{Motivation}
\begin{itemize}

\item Naming is hard.

\item \(\alpha\)-conversion for capture-avoiding
substitution is tricky to get right.

\item De Bruijn indices solve this issue neatly.
\end{itemize}

\end{frame}

\begin{frame }[fragile] \frametitle{De Bruijn Terms}
\begin{lstlisting }[language=Haskell]
data Term
= Bound Integer
| Lambda Term
| Apply Term Term
\end{lstlisting}
\begin{itemize}
\item The bound variable indexes outwards to the corresponding lambda.
\end{itemize}
\[\begin{aligned}
\text {\ tt{Lambda (Lambda (Lambda (Bound {\bf 0})))}} =& \lambda x . \lambda y . v
& \lambda \mathbf{z} . \mathbf{z} \\
\text{\ tt{Lambda (Lambda (Lambda (Bound {\bf 1})))}} =& \lambda x . \lambda \v
& mathbf{y} . \lambda z . \mathbf{y} \\
\text {\tt{Lambda (Lambda (Lambda (Bound {\bf 2})))}} =& \lambda \mathbf{x} . \»
& lambda y . \lambda z . \mathbf{x} \\
%o\text {\tt {L(A(L(A(BO) (L(B0))))(L(A(B1)(B0))))}} =&\\ \lambda z . (\lambda y . yv
¢ (\lambda x . x)) (\lambda w . z w)

\end{aligned} \]
\end{frame}

\begin{frame }[fragile] \frametitle{Beta Reduction}
\begin{lstlisting }[language=Haskell]

beta :: Integer —> Term -> Term -> Term

beta i s@(Bound j) t = if i = j then t else s

beta i (Lambda s) t = Lambda (beta (i + 1) s t)

beta i (Apply a b) t = Apply (beta i a t) (beta i b t)
\end{lstlisting}

\end{frame}

\begin{frame }[fragile] \frametitle{De Bruijn Terms in GULCII}
\begin{centering }\begin{lstlisting }[language=Haskell]
data Term

= Free String

| Bound Integer

| Lambda Strategy Term

13

65

70

75

80

85

90

95

100

105

110

115

120

gulcii doc/evaluation.tex

| Apply Term Term
\end{lstlisting }\end{centering}
\begin{itemize}
\item An additional constructor for named free variables.
\item An additional strategy parameter for lambdas.
\end{itemize}
\end{frame}

\section [strategies|{ Evaluation Strategies}

\begin{frame }[fragile] \frametitle{Evaluation Strategies}
\begin{lstlisting }[language=Haskell]
data Strategy
= Lazy
| Strict
| Copy
\end{lstlisting}
\end{frame}

\begin{frame }[fragile] \frametitle{Copy Evaluation}

\begin{lstlisting }[language=Haskell]

v=(\x?AB

\end{lstlisting}

\begin{itemize}

\item Evaluation of \(y\) proceeds by substituting \(B\) into all
occurences of \(x\) in \(A\), before anything else is evaluated.

\item If \(B\) is not needed by the result, it will not be evaluated.

\item If \(B\) is needed by the result more than once, it will be
evaluated more than once.

\end{itemize}

\end{frame}

\begin{frame }[fragile] \frametitle{Strict Evaluation}
\begin{lstlisting }[language=Haskell]

v=(\ x!A)B

\end{lstlisting}

\begin{itemize}

\item Evaluation of \(y\) proceeds by first completely evaluating \(B)\)
before substituting it into occurences of \(x\) in \(A\).
\item If \(B\) is not needed by the result, more work than necessary

will be performed.
\item Syntax in GULCII inspired by Haskell’s \tt{-XBangPatterns}.
\end{itemize}
\end{frame}

\begin{frame }[fragile] \frametitle{Lazy Evaluation}

\begin{lstlisting }[language=Haskell]

v=(\ x.A)B

\end{lstlisting}

\begin{itemize}

\item Evaluation of \(y\) shares the evaluation of \(B\) over all
occurences of \(x\) in \(A\), and \(B\) is evaluated on demand
as needed.

\item If \(B\) is not needed by the result, it will not be evaluated.

\item If \(B\) is needed by the result more than once, it will be
evaluated only once, with the result shared.

\end{itemize}

14

125

130

135

140

145

150

155

160

165

170

175

gulcii doc/evaluation.tex

\end{frame}
\section [graph]{Graph Reduction}

\begin{frame }[fragile] \frametitle{Graph Reduction — Types}
\begin{lstlisting }[language=Haskell]
data Term

= Free String

| Bound Integer

| Lambda Strategy Term

| Apply Term Term

| Reference Integer

type References = Map Integer Term
type Definitions = Map String Term

reduce
Definitions
—> References —> Term
-> Maybe (References, Term)
\end{lstlisting}
\end{frame}

\begin{frame }[fragile] \frametitle{Graph Reduction - Free}
\begin{lstlisting }[language=Haskell]
reduce defs refs (Free var)
= (,) refs ‘fmap‘ Map.lookup var defs
\end{lstlisting}
\end{frame}

\begin{frame }[fragile] \frametitle{Graph Reduction - Bound}
\begin{lstlisting }[language=Haskell]
reduce defs refs (Bound var)
= Nothing
\end{lstlisting}
\end{frame}

\begin{frame }[fragile] \frametitle{Graph Reduction - Lambda}
\begin{lstlisting }[language=Haskell]
reduce defs refs (Lambda strat term)

= fmap (Lambda strat) ‘fmap‘ reduce defs refs term
\end{lstlisting}
\end{frame}

\begin{frame }[fragile] \frametitle{Graph Reduction - Reference}
\begin{lstlisting }[language=Haskell]
reduce defs refs term@(Reference ref)
= case Map.lookup ref refs of
Just refTerm ->
case reduce defs refs refTerm of
Just (refs’, term’) —>
Just (Map.insert ref term’ refs
Nothing —>
Just (refs, refTerm)
Nothing —> error ”"reference not found”
\end{lstlisting}
\end{frame}

7, term)

15

180

185

190

195

200

205

210

215

220

225

230

gulcii doc/evaluation.tex

\begin{frame }[fragile] \frametitle{Graph Reduction — Apply Lambda Copy}
\begin{lstlisting }[language=Haskell]
reduce defs refs (Apply (Lambda Copy a) b)

= Just (refs, beta 0 a b)

beta :: Integer —> Term —> Term —-> Term

beta i s@(Bound j) t = if i = j then t else s

beta i (Lambda k s) t = Lambda k (beta (i + 1) s t)
beta i (Apply a b) t = Apply (beta i a t) (beta i b t)
beta i s t =s

\end{lstlisting}

\end{frame}

\begin{frame }[fragile] \frametitle{Graph Reduction - Apply Lambda Strict}
\begin{lstlisting }[language=Haskell |
reduce defs refs (Apply 1@(Lambda Strict a) b)
= case reduce defs refs b of
Just (refs’, b’) —> Just (refs’, Apply 1 b’)
Nothing -> Just (refs, beta 0 a b)
\end{lstlisting}
\end{frame}

\begin{frame }[fragile] \frametitle{Graph Reduction - Apply Lambda Lazy}
\begin{lstlisting }[language=Haskell]
reduce defs refs (Apply (Lambda Lazy a) b)
= let r = next refs
in Just (Map.insert r b refs
, beta 0 a (Reference r))

next :: Map Integer v —> Integer
next refs = case Map.maxViewWithKey refs of
Nothing -> 0

Just ((k, -), -) > k + 1
\end{lstlisting}
\end{frame}

\begin{frame }[fragile] \frametitle{Graph Reduction - Apply}
\begin{lstlisting }[language=Haskell]
reduce defs refs (Apply a b)
= case reduce defs refs a of
Just (refs’, a’) —>
Just (refs’, Apply a’ b)
Nothing —>
fmap (Apply a) ‘fmap‘ reduce defs refs b
\end{lstlisting}
\end{frame}

\section [garbage]{Garbage Collection}
\begin{frame} \frametitle{The Problems}
\begin{itemize}

\item

The References map may contain terms that are no longer referenced.

This leaks memory in the interpreter , which may be problematic for
long —-running programs.

16

235

240

245

250

255

260

265

270

275

280

285

290

gulcii doc/evaluation.tex

\item

There may end up a long chain of references, adding additional layers
of indirection , that will only be collapsed when the deepest term is
irreducible.

\item
We want to replace references with their terms as soon as they occur
only once.

\end{itemize}
\end{frame}

\begin{frame }[fragile] \frametitle {Example Evaluation With GC Disabled}
\begin{lstlisting }[language=Haskell , basicstyle=\small ,mathescape]

zero = \s z . z
succ = \n s z . s (ns z)
double = \m . m succ m

(double (succ zero))

\to \cdots
(\-(\- (1 ((#6 1) 0))))
where
#0 = (\.(\.(1 0)))
#1 = (\.(\.0))
42 = 1
#3 =0
#4 = (\.(\.(\. (1 ((2 1) 0)))))
#5 = #0
#6 = #b

\to \cdots

\end{lstlisting}
Term $\to \#6 \to \#5 \to \#0 \to$ is a chain of indirection.

References $\#1, \#2, \#3, \#4$ are all unreachable.
\end{frame}

\begin{frame} \frametitle{Example Evaluation With GC Disabled}
\only <1>{\includegraphics [width=\linewidth]{ gulcii -15}}%
\end{frame}

\begin{frame }[fragile] \frametitle{Garbage Collection}
\begin{lstlisting }[language=Haskell]
gc
References —> Term
-> (References, Term)

gc refs term

= let counts = refCount refs term Map.empty
in (Map. fromList
[(r, compact counts refs (refs Map.! r))
| (r, n) <— Map.toList counts
,n> 1]

, compact counts refs term)
\end{lstlisting}
\end{frame}

17

295

300

305

310

315

320

325

330

335

340

345

gulcii

doc/evaluation.tex

\begin{frame }[fragile] \frametitle {GC Helpers}
\begin{lstlisting }[language=Haskell]
type Count = Integer

refCount
References —> Term
-> Map Integer Count -> Map Integer Count

compact
Map Integer Count —> References
—> Term -> Term
\end{lstlisting}
\end{frame}

\begin{frame }[fragile] \frametitle{Reference Counting}
\begin{lstlisting }[language=Haskell]
refCount refs (Lambda strat a) counts

= refCount refs a counts

refCount refs (Apply a b) counts
= refCount refs a (refCount refs b counts)

refCount refs (Reference r) counts
= case r ‘Map.lookup‘ counts of
Just n —>
Map. insert r (n + 1) counts
Nothing —>
refCount refs (refs Map.! r)
(Map.insert r 1 counts)

refCount refs term m =m
\end{lstlisting}
\end{frame}

\begin{frame }[fragile] \frametitle{Compaction}
\begin{lstlisting }[language=Haskell]
compact counts refs term@(Reference r)
= case r ‘Map.lookup‘ counts of
Just 1 —> compact counts refs (refs Map.! r)
- —> term

compact counts refs (Lambda strat term)
= Lambda strat (compact counts refs term)

compact counts refs (Apply a b)
= Apply (compact counts refs a)
(compact counts refs b)

compact counts refs term = term
\end{lstlisting}
\end{frame}

\section [examples]|{ Examples}

\begin{frame} \frametitle{succ zero}

\only <1>{\includegraphics [width=\linewidth|{succ-zero/gulcii -0}}%

18

350

355

360

365

370

375

380

385

390

395

gulcii

doc/evaluation.tex

\only <2>{\includegraphics [width=\linewidth
\only <3>{\includegraphics [width=\linewidth

\only <5>{\includegraphics [width=\linewidth

succ—zero/gulcii -1}}%
succ-zero/gulcii -2}}%

succ—zero/gulcii -4}}%

I{
{
\only <4>{\includegraphics [width=\linewidth]{succ-zero/gulcii -3}}%
I{
{

\only <6>{\includegraphics [width=\linewidth

succ-zero/gulcii -5}}%

apply is orange, lambda is magenta, variable is purple, free variable is cyan

\end{frame}

\begin{frame }[fragile] \frametitle{double (succ zero) - Copy}
\begin{lstlisting }[language=Haskell]
succ = \n s z 7?7 s (ns z)
zero = \s z 7 z
double = \m 7 m succ m
\end{lstlisting}
\end{frame}

\begin{frame} \frametitle{double (succ zero) - Copy}
\only <1>{\includegraphics [width=\linewidth]{double -
\only <2>{\includegraphics [width=\linewidth]{double -
\only <3>{\includegraphics [width=\linewidth]{double -
\only <4>{\includegraphics [width=\linewidth]{double -
\only <5>{\includegraphics [width=\linewidth]{double -

J

]

J

J

succ—-zero)—
succ—-zero)—
succ—-zero)—
succ—-zero)—
succ—-zero

succ—-zero

\only <6>{\includegraphics [width=\linewidth]{double - -
\only <7>{\includegraphics [width=\linewidth]{double -
\only <8>{\includegraphics [width=\linewidth]{double —-(succ-zero)-
\only <9>{\includegraphics [width=\linewidth]{ double —-(succ-zero)—-
\only <10>{\includegraphics [width=\linewidth
\only <11>{\includegraphics [width=\linewidth

succ—-zero)—

Py

)
)
)
)
)
)
)
)

{ double —(succ-zero)
{double —(succ-zero)

J
J

G -10}}%

\only <12>{\includegraphics [width=\linewidth]{double —(succ-zero)
G -11}}%

\only <13>{\includegraphics [width=\linewidth]{ double - (succ-zero)
G -12}}%

\only <14>{\includegraphics [width=\linewidth]{double —-(succ-zero)
G -13}}1%

\only <15>{\includegraphics [width=\linewidth]{ double —(succ-zero)
G —14}}%

\only <16>{\includegraphics [width=\linewidth]|{ double - (succ-zero)
G -15}}%

\only <17>{\includegraphics [width=\linewidth]{double —-(succ-zero)
G -16}}%

\only <18>{\includegraphics [width=\linewidth]{double -(succ-zero)
S 173 %

\only <19>{\includegraphics [width=\linewidth |{ double - (succ-zero)
G -18}1%

copy-lambda is pink
\end{frame}

\begin{frame }[fragile] \frametitle{double (succ zero) - Strict}
\begin{lstlisting }[language=Haskell]
succ = \n s z ! s (n s z)
zero = \s z | z
double = \m ! m succ m
\end{lstlisting}
\end{frame}

copy/gulcii -0}}%
copy/gulcii -1}}%

copy/gulcii -2}}%
copy/gulcii -3}}%
copy/gulcii -4}}%
copy/gulcii -5}}%
copy/gulcii -6}}%
copy/gulcii -7}}%
copy/gulcii -8}}%
—copy/gulcii -9}}%
—copy/gulcii v
—copy/gulcii v
—copy/gulcii v
—copy/gulcii v
—copy/gulcii v
—copy/gulcii v
—copy/gulcii v
—copy/gulcii v

—copy/gulcii v

19

400

405

410

415

420

425

430

435

gulcii doc/evaluation.tex

\begin{frame} \frametitle{double (succ zero) - Strict}
\only <1>{\includegraphics [width=\linewidth]{double -(succ-zero)-strict /gulcii ¥

s -0}1%

\only<2>{\includegraphics [width=\linewidth]{double —-(succ-zero)-strict /gulcii v
S -1}1%

\only <3>{\includegraphics [width=\linewidth]{double —-(succ-zero)-strict /gulcii ¥
S -2}1%

\only <4>{\includegraphics [width=\linewidth]{double -(succ-zero)-strict /gulcii ¥
S -3}1%

\only <5>{\includegraphics [width=\linewidth]{double —-(succ-zero)-strict /gulcii v
S -4}1%

\only <6>{\includegraphics [width=\linewidth]{double —-(succ-zero)-strict /gulcii ¥
S -5}1%

\only <7>{\includegraphics [width=\linewidth]{double -(succ-zero)-strict /gulcii ¥
S —6}1%

\only <8>{\includegraphics [width=\linewidth]{double —-(succ-zero)-strict /gulcii v
S =TH%

\only <9>{\includegraphics [width=\linewidth]{double —(succ-zero)-strict /gulcii v
S -8}1%

\only <10>{\includegraphics [width=\linewidth]{double -(succ-zero)-strict /gulcii ¥
S -9}11%

\only <11>{\includegraphics [width=\linewidth]{double —-(succ-zero)-strict /gulcii v
G -10}}%

\only <12>{\includegraphics [width=\linewidth]{double —(succ-zero)-strict /gulcii v
G -11}}%

\only <13>{\includegraphics [width=\linewidth]{ double —-(succ-zero)-strict /gulcii ¥
G -12}}%

\only <14>{\includegraphics [width=\linewidth]{double -(succ-zero)-strict /gulcii »
G -13}}%

strict —lambda is red
\end{frame}

\begin{frame }[fragile] \frametitle{double (succ zero) - Lazy}
\begin{lstlisting }[language=Haskell]
succ = \n s z . s (n s z)
zero = \s z . z
double = \m . m succ m
\end{lstlisting}
\end{frame}

\begin{frame} \frametitle{double (succ zero) - Lazy}
\only <1>{\includegraphics [width=\linewidth]{ double -
\only<2>{\includegraphics [width=\linewidth]{double -
\only <3>{\includegraphics [width=\linewidth]{double -
\only <4>{\includegraphics [width=\linewidth]{ double -
\only <5>{\includegraphics [width=\linewidth]{double -
J
J
]
]

succ-zero)-lazy/gulcii -0}}%
succ—zero)-lazy/gulcii -1}}%
succ-zero)-lazy/gulcii -2}}%
succ-zero)-lazy/gulcii -3}}%
succ—zero)-lazy/gulcii -4}}%
\only <6>{\includegraphics [width=\linewidth]{double -(succ-zero)-lazy/gulcii -5}}%
\only <7>{\includegraphics [width=\linewidth|{double —-(succ-zero)-lazy/gulcii -6}}%
\only <8>{\includegraphics [width=\linewidth]|{double —-(succ-zero)-lazy/gulcii -7}}%
\only <9>{\includegraphics [width=\linewidth]{double —-(succ-zero)-lazy/gulcii -8}}%

PRy

\only <10>{\includegraphics [width=\linewidth |{double —-(succ-zero)-lazy/gulcii -9}}%
\only <11>{\includegraphics [width=\linewidth]{double -(succ-zero)-lazy/gulcii v

G -10}}%
\only <12>{\includegraphics [width=\linewidth]{ double -(succ-zero)-lazy/gulcii ¥

20

gulcii doc/evaluation.tex

G -111)%
\only <13>{\includegraphics [width=\linewidth]{double -(succ-zero)-lazy/gulcii v
G -12}}%
440 \only <14>{\includegraphics [width=\linewidth]{ double —(succ-zero)-lazy /gulcii v
G -13} 1%
\only <15>{\includegraphics [width=\linewidth]{double -(succ-zero)-lazy/gulcii ¥
G -14}}%

references are green (first occurence) and turquoise (later occurences)
\end{frame}
445
\begin{frame }[fragile] \frametitle{Evaluation Strategy Comparison 1/3}
\begin{lstlisting }[language=Haskell]
zero = \s z Q z
succ = \n s z@s (ns z)
450 double = \n @ n succ n
const = \a b @ a
join = \f a@ f a a

join const (double (succ zero))
455 \end{lstlisting}

\begin{itemize}

\item @ = ? Copy : 16 beta reductions, 8 free variable instantiations

\item @ = ! Strict : 13 beta reductions, 6 free variable instantiations

\item @ = . Lazy : 13 beta reductions, 6 free variable instantiations
460 \end{itemize}

\end{frame}

\begin{frame }[fragile] \frametitle{Evaluation Strategy Comparison 2/3}
\begin{lstlisting }[language=Haskell]
465 id = \x @ x
loop = (\x @ x x) (\x @ x x)
const = \a b @ a

const id loop
470 \end{lstlisting}

\begin{itemize}

\item @ = ? Copy : 2 beta reductions, 2 free variable instantiations

\item @ = ! Strict : does not terminate

\item @ = . Lazy : 2 beta reductions, 2 free variable instantiations
475 \end{itemize}

\end{frame}

\begin{frame }[fragile] \frametitle{Evaluation Strategy Comparison 3/3}
\begin{itemize}
480 \item Copy evaluation is super-easy to implement, but inefficient.

\item Strict evaluation can reduce space usage.

\item
485 Lazy evaluation terminates more often than strict evaluation, and is
just as efficient in terms of number of reductions.

\item In GULCII we can mix and match within a single term.
\end{itemize}

490
\end{frame}

21

gulcii doc/.gitignore

\end{document }

4 doc/.gitignore

.aux
.log
.nav
.out
.pdf
.snm
.toc
.vrb
.md. tex

5 doc/Makefile

* X K X X X X ¥ ¥

all: encoding.pdf

clean:
-rm —-f encoding.aux encoding.log encoding.md.tex encoding.nav encoding. s
& out encoding.pdf encoding.snm encoding.toc encoding.vrb

encoding . pdf: encoding.tex encoding.md.tex
pdflatex encoding.tex
pdflatex encoding.tex
pdflatex encoding.tex

encoding .md. tex: encoding.md
pandoc -t beamer —-slide-level 2 encoding.md -o encoding.md. tex

6 doc/visualisation.png

o
[] apply
@ scope @ [)
reference @

@ reference
(shared)

® length (cons a nil)
(with Church data)

7 extra/gulcii_ m.pd

#N canvas 3 58 450 300 10;

#X obj 21 22 receive™ \$1-p;

#X obj 20 218 throw™ \$1-1;

#X obj 97 218 throw™ \$1-r;

#X obj 21 134 expr” sin($v1x6.283185307179586);
#X obj 97 157 expr” sin($v1%6.283185307179586);
#X obj 147 19 inlet;

22

10

15

20

25

10

15

20

25

extra/gulcii.pd

gulcii

#X obj 147 40 float;

#X obj 147 61 vline 7;

#X obj 21 43 x~ \$2;

#X obj 97 189 x7;

#X obj 20 192 %7

#X obj 96 106 +~ 0.25;

#X obj 147 82 hip~ 1;

#X obj 147 103 lop~ 15;

#X connect 0 0 8 O0;

#X connect 3 0 10 O;

#X connect 4 0 9 O0;

#X connect 5 0 6 O0;

#X connect 6 0 7 O0;

#X connect 7 0 12 0;

#X connect 8 0 3 O0;

#X connect 8 0 11 O0;

#X connect 9 0 2 O0;

#X connect 10 0 1 0;

#X connect 11 0 4 O0;

#X connect 12 0 13 0;

#X connect 13 0 9 1;

#X connect 13 0 10 1;

8 extra/gulcii.pd

#N canvas 3 58 335 369 10;
#X obj 18 10 netreceive 8765;
#X obj 21 101 loadbang;

#X obj 21 122 delay 1000;

#X msg 22 148 \; pd dsp 1;
#X obj 121 40 print;

#X obj 141 252 catch™ \$0-r;
#X obj 70 209 gulcii-v \$0 O0;
#X obj 27 251 catch™ \$0-1;
#X obj 19 40 s \$0-control;
#X obj 168 126 list prepend set;
#X obj 168 148 list trim;

#X msg 168 170 rebound succ;
#X obj 59 65 route statistics;
#X obj 90 310 dac”;

#X obj 27 273 expr” tanh($vl);
#X obj 142 275 expr~ tanh($vl);
#X connect 0 0 8 O;

#X connect 0 0 12 0;

#X connect 0 1 4 O0;

#X connect 1 0 2 O0;

#X connect 2 0 3 O0;

#X connect 5 0 15 0;

#X connect 7 0 14 O0;

#X connect 9 0 10 0;

#X connect 10 0 11 O0;

#X connect 12 1 9 0;

#X connect 14 0 13 0;

#X connect 15 0 13 1;

9 extra/gulcii_ v.pd

23

10

15

20

25

30

35

40

45

50

55

gulcii

extra/gulcii_v.pd

AN
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X
#X

24

canvas 3 63 472 453 10;
46 214 vline 7;
37 392 x7;

obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
obj
msg
msg
obj

125
182
127
143
223
209
127
207

18 43 route start

392
246
312
267
267
312
345
365

* 3

send” \$0-p;
+7
catch™ \$0-1;
catch™ \$0-r;

+

expr” sin($v1%6.283185307179586) ;
expr” sin($v1%6.283185307179586) ;
stop statistics;

37 413 throw™ \$1-1;

125

413

18 18 r

358
358
358
358
358
358
143
224
133
163
193
223
253
132
132
130
132
131

107
128
149
170
191
212
288
288
109
109
109
109
109
136
179
228
158
203

throw™ \$1-r;
\$1-control;
gulcii_m \$0
gulcii_m \$0
gulcii_m \$0
gulcii_m \$0
gulcii_m \$0
gulcii_m \$0
%~ 0.125;

%7 0.125;

+;

+;

+;
+;

+;
vline 7;
lop™ 15;
phasor 7;
hip~™ 1;
+7 50;

18 166 1 1000;
80 168 0 1000;

143

connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect
connect

68 unpack f f f f f f;

0

0 O U~ O
OO OO OO O OO

NNDNNNNNRFERF == O
DU WD = O Wo oo

SO OO OO OoO N~ O

1 0;
2 0;
11 0;
12 0;
8 0;
20 0;
21 0;
9 0;
1 1;
2 1;
32
33
34
10
4 1;
71
27
22
23
24
25

o O oo

—_ = = O

=N W oto

60

65

70

75

10

gulcii extra/start.sh

#X connect 27 0 30 O0;
#X connect 28 0 31 0;
#X connect 29 0 3 0;

#X connect 29 0 4 0;

#X connect 29 0 7 0;

#X connect 30 0 28 0;
#X connect 31 0 29 0;
#X connect 32 0 0 0;

#X connect 33 0 0 0;

#X connect 34 0 19 0;
#X connect 34 0 22 0;
#X connect 34 1 18 0;
#X connect 34 1 23 0;
#X connect 34 2 17 0;
#X connect 34 2 24 0;
#X connect 34 3 16 0;
#X connect 34 3 25 0;
#X connect 34 4 15 0;
#X connect 34 4 26 0;
#X connect 34 5 14 0;
#X connect 34 5 26 1;

10 extra/start.sh

#!/bin/sh

sudo cpufreq—-set —-c 0 —g performance

sudo cpufreq-set —-c 1 —g performance

pd extra/gulcii.pd &

pdpid=$!

sleep 5

./.cabal-sandbox/bin/gulcii 1024 768 fullscreen | pdsend 8765
kill ”${pdpid}”

11 .gitignore

/dist/
/.cabal-sandbox/
/cabal .sandbox . config
*. hi

*.0

.stack -work/

stack .yaml

12 gulcii.cabal

Name: gulcii
Version : 0.3
Synopsis: graphical untyped lambda calculus interactive interpreter

Description:
GULCII is an untyped lambda calculus interpreter supporting interactive
modification of a running program with graphical display of graph reduction.

See README.md for the user manual.

Homepage : https://code.mathr.co.uk/gulcii
License: GPL-2

25

15

20

25

30

35

40

45

50

55

60

65

gulcii.cabal

gulcii

License-file: LICENSE

Author: Claude Heiland -Allen
Maintainer : claude@mathr. co.uk
Category : Compilers/Interpreters
Build-type: Simple

Cabal-version : >=1.6

Tested —-With : GHC==8.2.1

extra-source—-files: doc/Makefile
doc/encoding .md

doc/encoding . tex
doc/visualisation .png
README. md

Data—files : lib/bits.gu,

lib /bool.gu,

lib /church.gu,
lib/either .gu,
lib/function.gu,
lib/list .gu,

lib /maybe.gu,

lib /natural.gu,
lib /pair.gu,

lib /prelude.gu,
lib /edinburgh.gu,

exX
ex
ex

Executable gulcii

tra/gulcii.pd,
tra/gulcii_m .pd,
tra/gulcii_-v .pd

HS-source—-dirs: src
Main-1is: Main . hs
Build -depends: base >= 3 & < 6,

coO

ca

ntainers >= 0.3 & < 0.7,
filepath >= 1.1 & < 1.5
gtk >= 0.11 & < 0.16

0

I

iro >= 0.11 & < 0.14

Other—-modules: Bruijn
Command
Draw
Evaluation

GC
Gr

aph

Lambda
Layout

Meta

Parse
Paths_gulcii
Reduce

Se
Su

tting
gar

ghc-options: -Wall —threaded -rtsopts

—— ghc-prof-options:

Source—-Repository head
Type: git

Location: https://code.mathr.co.uk/gulcii.git

26

—-prof —auto-all -caf-all

70

10

10

15

20

25

gulcii

lib /bits.gu

Source—-Repository this
Type: git
Tag: v0.3
Location: https://code.mathr.co.uk/gulcii.git

13 lib/bits.gu

Data. Bits (Bits (

(&.), (.|.), xor, complement,

bit , setBit, clearBit, complementBit, testBit ,
shift , shiftL , shiftR, rotate, rotatelL , rotateR,
bitSize , isSigned))

bits

bits@and = zipWith and

bits@Qor = zipWith or

bits@xor = zipWith xor

bits@not = map not

14 lib/bool.gu

boolean

false =\ ¢t f . f

true = \ t f . ¢t

and =\ ab . aba

or =\ ab . aab

not = \ a . a false true

15 lib/church.gu

id = \x . x
const = \x y . x
true = \t £ . ¢

false = \t f f
and = \a b . aba
or =\ab . aab

not = \a . a false true

zero = \s z . z

succ = \n s z . s (ns z)

iszero = \n . n (const false) true
add = \m n . m succ n

mul = \m n . m (add n) zero

exp = \mn . nm

pred =\n s z . n (\gh . h (gs)) \u.z) (\u.nu
sub = \m n . n pred m

equal = \m n . and (iszero (sub m n)) (iszero (sub n m))
nil = \cn . n
cons = \x xs ¢n . ¢ x (xs ¢ n)

isnil = \1 . 1 (\x xs . false) true

head = \1 . 1 (\x xs . x) id

tail =\l c¢n . 1 (\x xs g . g x (xs ¢)) (\xs . n) (\x xs
map = \f I . 1 (\x xs . cons (f x) xs) nil

sum = \1 . 1 (\x xs . add x xs) zero

length = \1 . 1 (\x xs . succ xs) zero

pair =\a bp . pab

fst =\p . p (\a b . a)

XS)

27

30

10

15

20

25

30

35

40

45

gulcii

lib/edinburgh.gu

snd:\p.pg\ab.b)
nj

nothing = \ n
just =\anj . j a
maybe = \n jm . mn j

left =\alr . 1a
right =\b 1l r . rb
either = \1 r e . el r

16 lib/edinburgh.gu

boolean

false =\ t f . f

true = \ t f . ¢t

and =\ ab . aba

or =\ ab . aab

not = \ a . a false true
function

id =\ a . a

const =\ a b . a

compose = \ bc ab a . bc (ab a)
flip = \ abc b a . abc a b

fix =\ f (A\x . f (xx)) (\x . f (xx))
error = \e . error e

seq =\ a!\b.bDb

list

nil =\ ¢n . n

cons = \ X Xs ¢ n . C X XS

null =\ 1 1 (\x xs . false) true

head = \ 1 1 (\x xs . x) (error head)
tail =\ 1 1 (\x xs . xs) (error tail)

map =\ f 1 . 1 (\x xs . cons (f x) (map f xs)) nil

append = \ us vs . us (\x xs . cons x (append xs vs)) vs

filter =\ p 1 . 1 (\x xs . p x (cons x) id (filter p xs))

index =\ 1l n . n g\p .1 (\x xs . index xs p) (error index)) (I (\x xs . x) (¥

& error index)

reverse = \ 1 . 1 (\x xs . append (reverse xs) (cons x nil))
foldr =\ f el . 1 (\x xs . f x (foldr f e xs)) e

length = foldr (const succ) zero

ands = foldr and true

ors = foldr or false

concat = foldr append nil

all = \f . compose ands (map f)

any = \f . compose ors (map f)

concatMap = \f . compose concat (map f)

composes = foldr compose id

sum = foldr add zero

product = foldr mul (succ zero)

repeat = \x . cons x (repeat x)

cycle = compose concat repeat

take = \n I . n (\p . 1 (\x xs . cons x (take p xs))
drop=\n1l . n (\p . 1 (\x xs . drop p xs) nil) 1

nil)

transpose = \1 . 1 (\xs xss . xs (\y ys . cons (cons y (concatMap (take 1) xss))v

 (transpose (cons ys (map (drop 1) xss)))) (transpose xss))

iterate = \f x . cons x (iterate f (f x))
last = \1 I (\x xs . xs (\y ys . last xs) x) (error last)
replicate = \n x . take n (repeat x)

mnatural

28

50

55

10

15

20

gulcii lib/either.gu
zero = \ s z . 2

succ =\ ns z . sn

infinity = succ infinity

even = \n . n odd true

odd = \n . n even false

add =\mn . m (\p . suce (add n p)) n

mul=\mn . m (\p . add n (mul n p)) zero

exp =\mn . n (\p . mulm (exp m p)) one

sub =\mn . m (\p . n (sub p) m) zero

equal =\ mn . m (\mm . n (\nn . equal mm nn) false) (n (\nn false) true)

17 lib/either.gu

either

left =\ alr . 1l a

right =\ bl r . r b

either = \ ac bc e . e ac bc

18 lib/function.gu

function

id =\ a . a

const =\ a b . a

compose = \ bc ab a . bc (ab a)
flip =\ abc b a . abc a b
fix =\ f . f (fix f)

undefined = undefined

error = \e . error e

seq =\ a!\b.bDb

19 lib/list.gu

module Data. List (

(++), head, last, tail, init, mnull, length, map, reverse,

intersperse, intercalate, transpose, subsequences, permutations,

foldl, foldl’, foldll, foldll’, foldr, foldrl, concat, concatMap,

and, or, any, all, sum, product, maximum, minimum, scanl, scanll

scanr , scanrl, mapAccuml, mapAccumR, iterate, repeat, replicate,

cycle, unfoldr, take, drop, splitAt, takeWhile, dropWhile, span,

break, stripPrefix, group, inits, tails, 1isPrefixOf, isSuffixOf,

isInfixOf , elem, notElem, Ilookup, find, filter , partition, (',

elemIndex, elemlIndices, findIndex, findIndices, zip, =zip3, =zip4,

zipb, zip6, zip7, zipWith, zipWith3, zipWith4, zipWithb, zipWith6,

zipWith7 , unzip, unzip3, wunzip4, unzip5, unzip6, unzip7, lines,

words, unlines, unwords, nub, delete, (\\), wunion, intersect, sorty
g)

insert , nubBy, deleteBy, deleteFirstsBy , wunionBy, intersectBy ,

groupBy, sortBy, insertBy, maximumBy, minimumBy, genericLength

genericTake, genericDrop, genericSplitAt, genericlndex, v
 genericReplicate

) where

list

nil =\ ¢n . n

cons = XS ¢ n . C X X8

\ x
null =\ 1 . 1 (\x xs . false) true
\ 1 1 (\x xs . x) (error head)

29

25

30

35

40

45

50

gulcii lib/maybe.gu

tail =\ 1 . 1 (\x xs . xs) (error tail)

map =\ f 1 . 1 (\x xs . cons (f x) (map f xs)) nil

append = \ us vs . us (\x xs . cons x (append xs vs)) vs
filter =\ p 1l . 1 (\x xs . p x (cons x) id (filter p xs)) nil

index =\ 1 n . n (\p . 1 (\x xs . index xs p) (error index)) (1 (\x xs . x) (¥
& error index))

reverse = \ 1 . 1 (\x xs . append (reverse xs) (cons x nil)) nil

foldr =\ f el . 1 (\x xs . f x (foldr f e xs)) e

length = foldr (const succ) zero

ands = foldr and true

ors = foldr or false

concat = foldr append nil

all = \f . compose ands (map f)

any = \f . compose ors (map f)

concatMap = \f . compose concat (map f)

composes = foldr compose id

sum = foldr add zero

product = foldr mul (succ zero)

repeat = \x . cons x (repeat x)

cycle = compose concat repeat

zipWith = \f 1 r . 1 (\x xs . r (\y ys . cons (f x y) (zipWith f xs ys)) nil) v
& mil

partition = \p 1 . 1 (\x xs . p x first second (cons x) (partition p xs)) (pair v
G nil nil)

partitionEithers = \1 . 1 (\e es . e (compose first cons) (compose second cons) v

& (partitionEithers es)) (pair nil nil)

take = \n I . n (\p . 1 (\x xs . cons x (take p xs)) nil) nil

drop =\n 1l . n (\p . 1 (\x xs . drop p xs) nil) 1

transpose = \1 . 1 (\xs xss . xs (\y ys . cons (cons y (concatMap (take 1) xss))v
& (transpose (cons ys (map (drop 1) xss)))) (transpose xss)) nil

catMaybes = \1 . 1 (\x xs . maybe id cons x (catMaybes xs)) nil

iterate = \f . \x ! cons x (iterate f (f x))

last =\l . 1 (\x xs . xs (\y ys . last xs) x) (error last)

replicate = \n x . take n (repeat x)

rotate = \n bs . splitAt n bs \xs ys . append ys xs

20 lib/maybe.gu

module Data.Maybe (

Maybe (Nothing , Just), maybe, isJust, isNothing, fromJust, fromMaybe,
listToMaybe, maybeToList, catMaybes, mapMaybe

) where instance Monad Functor MonadPlus Eq Ord Read Show

maybe

nothing =\ j n . n
just =\ a jn . ja
maybe = \ b abm . m ab b

21 lib/natural.gu

natural

zero = \ S z . z

succ =\ ns z . s n
infinity = succ infinity
even = \n . n odd true
odd = \n . n even false

add =\ mn . m (\p . succ (add n p)) n

10

10

15

20

25

gulcii lib/pair.gu
mul =\mn . m (\p add n (mul n p)) zero

sub =\mn . m (\p . n (sub p) m) zero

equal =\ mn . m (\mm . n (\nn . equal mm nn) false) (n (\nn . false) true)
lessThan = \x y . x (\xx . y (\yy . lessThan xx yy) false) (y (\yy . true) falsey

S)

22 lib/pair.gu

pair

pair =\ abp . pab

fst =\ p.p\ab . a

snd =\p.p\ab.b

curry = \ f a b f (pair a b)
uncurry = \ f p f (fst p) (snd p)
swap = \p . pair (snd p) (fst p)

first = \f p . pair (f (fst p)) (snd p)
second = \ { p . pair (fst p) (f (snd p))

23 lib/prelude.gu

:load bits
:load bool
:load either
:load function
:load list
:load maybe
:load natural
:load pair

24 LICENSE

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software ——to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it , that you can change the software or use pieces of it

31

30

35

40

45

50

55

60

65

70

75

80

gulcii

LICENSE

in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that

you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally , any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The ”Program”, below,
refers to any such program or work, and a ”"work based on the Program”
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in

the term ”modification”.) FEach licensee is addressed as "you”.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted , and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it , in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the

32

85

90

95

100

105

110

115

120

125

130

135

gulcii

LICENSE

notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and

you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it , thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c¢) If the modified program normally reads commands interactively
when run, you must cause it , when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections

33

140

145

150

155

160

165

170

175

180

185

190

195

gulcii

LICENSE

1 and 2 above on a medium customarily used for software interchange;

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer , in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files , plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

34

or,

200

205

210

215

220

225

230

235

240

245

250

gulcii LICENSE

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty —free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces , the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and ”any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software

Foundation .

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes

35

gulcii LICENSE

make exceptions for this. Our decision will be guided by the two goals
255 of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

260 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

265 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

270 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE ILAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

275 TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS) , EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

280 END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
285 possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively

290 convey the exclusion of warranty; and each file should have at least
the ”copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

295
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

300
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

305
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street , Fifth Floor, Boston, MA 02110-1301 USA.

310 Also add information on how to contact you by electronic and paper mail.

36

315

320

325

330

335

10

15

20

25

gulcii README.md

If the program is interactive , make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than ‘show w’ and ‘show c¢’; they could even be
mouse—clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school , if any, to sign a ”copyright disclaimer” for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library , you may
consider it more useful to permit linking proprietary applications with the

library . If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

25 README.md

GULCII

GULCII is an untyped lambda calculus interpreter supporting interactive
modification of a running program with graphical display of graph reduction.

Lambda calculus terms with some sugar coating:

term ::= variable —— free or bound

| "\’ variable+ strategy term —— lambda abstraction

| term+ —— application

| 7(’ term)’

| integer

| list
variable ::= [a-z][A-Za-2z0-9]x
strategy = .7 | 17| 77 -— lazy | strict | copy
integer ::= [0-9]+ —— uses Scott-encoding
list ::= [’ (term (, T)=*)? ']’ —— uses Scott-encoding

There are three variants of lambda abstraction: lazy, strict, and copy:

37

30

35

40

45

50

55

60

65

70

75

80

gulcii README.md

f x x —— x is evaluated lazily with sharing
\x ! f x x —— x is evaluated strictly and shared
f x x —— x is copied before any evaluation

There is additional syntax sugar for natural numbers and lists , using
<http://en.wikipedia.org/wiki/Mogensen7E2%80%93Scott_encoding#Scott_encoding >:

[0,1,2,3]
There is a small standard library based loosely around the Haskell Prelude:

:load prelude
:browse

If you define a term using free variables, they can be modified while
the program is running, but sharing is lost. If you define a term as

a fixed point (perhaps with Y-combinator) then sharing works (to some
extent), but you can’t modify the code while it is running any more.

Meta Commands

To exit type:
tquit

Entering a term evaluates it.

Terms can be bound to names, stored in a global dictionary:
foo = bar

The global dictionary can be listed or wiped clean:

:browse
:clear

Installed files can be loaded:
:load church
Machine-readable node statistics are output to stdout, as well as when
free variables are instantiated by looking up their definitions. These
are intended to be used for sonification, for example with Pure-data:
pd extra/gulcii.pd &
sleep 5
gulcii | pdsend 8765
The sonification is controlled by two commands:
:start

:stop

Settings

38

85

90

95

100

10

15

20

25

gulcii Setup.hs

There are some runtime adjustable settings:

:get NewsOnTop
:set NewsOnTop
:unset NewsOnTop
:toggle NewsOnTop

Where NewsOnTop is a setting. Settings include:

TraceEvaluation
CollectGarbage
RealTimeDelay
RealTimeAcceleration
Retrylrreducible
EmitStatistics
EmitRebindings
EchoToStdOut
EchoToGUI
Savelmages
NewsOnTop

26 Setup.hs

import Distribution.Simple
main = defaultMain

27 src/Bruijn.hs

{-
gulcii —— graphical untyped lambda calculus interpreter
Copyright (C) 2011, 2013, 2017 Claude Heiland-Allen

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

-}
module Bruijn (Term(..), bruijn, freeVariablesIn) where

import Data.Maybe (listToMaybe)
import Data.Set (Set, empty, singleton, union)

import qualified Lambda as U
import Evaluation (Strategy)

39

30

35

40

45

50

55

60

65

70

10

gulcii src/Command.hs

data Term
= Free String
| BoundO
| Scope Term
| Lambda Strategy Term
| Apply Term Term
deriving (Read, Show, Eq, Ord)

bruijn :: U.Term -> Term
bruijn = bruijn’ []
bruijn’ :: [String] —> U.Term —> Term

bruijn’ m (U.Apply s t) = Apply (bruijn’ m s) (bruijn’ m t)
bruijn’ m (U.Lambda k v t) = Lambda k (bruijn’ (v : m) t)
bruijn’ m (U.Variable v) =
case genericElemIndex v m of
Nothing -> Free v
Just i —> applyN i Scope Bound0

applyN :: Integer -> (a -> a) -> a —> a
applyN n f
| n =0 = id

| otherwise = f . applyN (n - 1) f

freeVariablesIn :: Term —> Set String

freeVariablesIn (Free v) = singleton v

freeVariablesIn Bound0 = empty

freeVariablesIn (Scope t) = freeVariablesIn ¢

freeVariablesIn (Lambda _ t) = freeVariablesIn t

freeVariablesIn (Apply s t) = freeVariablesIn s ‘union‘ freeVariablesIn t

{-
Generic list functions.

-}

genericElemIndex :: (Eq a, Enum b, Num b) => a -> [a] -> Maybe b
genericElemIndex x = genericFindIndex (x ==)
genericFindIndex :: (Enum b, Num b) => (a —> Bool) -> [a] —> Maybe b

genericFindIndex p = listToMaybe . genericFindIndices p

genericFindIndices :: (Enum b, Num b) => (a -> Bool) -> [a] -> [Db]
genericFindIndices p xs = [1 | (x, 1) <= zip xs [0 ..], p x]

28 src/Command.hs

{_
gulcii —— graphical untyped lambda calculus interpreter
Copyright (C) 2011, 2013, 2017 Claude Heiland-Allen

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

40

15

20

25

30

10

15

20

25

30

gulcii src/Draw.hs

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

-}

module Command (Command(..), parse) where

import Control. Applicative ((<$>), (<*>), (<$), (<), (<[|>))
import qualified Sugar as S

import qualified Meta as M

import Parse

data Command = Define String S.Term | Evaluate S.Term | Meta M. Meta
deriving (Read, Show, Eq, Ord)

parse :: Parser String Command

parse = (Define <$> name <* sym "=" <%> S.parse)
<|> (Evaluate <$> S.parse)
<[> (Meta <$ sym ”:” <> M.parse)

29 src/Draw.hs

{_
gulcii —— graphical untyped lambda calculus interpreter
Copyright (C) 2011, 2013, 2017 Claude Heiland-Allen

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along

with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

-}
module Draw (draw) where

import qualified Data.Map. Strict as M
import Data.Map. Strict (Map)

import Graphics.Rendering. Cairo hiding (x, y)

import qualified Layout as L
import Evaluation (Strategy (..))

type RGB = (Double, Double, Double)

41

35

40

45

50

55

60

65

70

75

80

85

gulcii src/Draw.hs
colour :: L.Term -> RGB
colour (L.Free _ _) = (0, 0.5, 1)
colour (L.Bound0 -) = (0.5, 0, 1)
colour (L.Scope) =(1, 1, 0)
colour (L.Lambda Strict - _) = (1, 0, 0)
colour (L.Lambda Lazy - -) = (1, 0, 0.5)
colour (L.Lambda Copy ~) =(1, 0, 1)
colour (L.Apply - .) = (1, 0.5, 0)
colour (L.RefInst - - _) = (0.5, 1, 0)
colour (L.Reference - _) = (0, 1, 0.5)
circle :: L.Coords —> RGB -> Render ()
circle (x, y) (r, g, b) = do

save

translate

arc 0 0 0.365 0 (2xpi)

setSourceRGB r g b

fillPreserve

setSourceRGB 0 0 0

stroke
restore

(fromIntegral x)

line :: L.Coords —> L.Coords —> Render ()

line (x, y) (x

save

I

, y') = do

moveTo (fromIntegral x)

lineTo (fromIntegral x’) (fromIntegral y’)
stroke
restore

draw :: Double —> Double —> L.Layout —> Render ()

(fromIntegral y)

draw ww0 hh0 (L.Layout t w h ps) = do

save

translate dx dy

scale s

translate 0.5 0.5

S

setLineWidth 0.1
setSourceRGB 0 0 0
drawLinks ps t
drawNodes t

setLineCap LineCapRound
setSourceRGB 0.5 0.5 0.5
drawVLinks []
setFontSize (6 / sqrt s)
translate 0 0.5
drawNames t

setSourceRGB 0
fillPreserve

setLineWidth

setSourceRGB 1

stroke
restore
where

t

0

1

0

1

(0.2 / sqrt s)

(fromIntegral y)

s = if fromIntegral w * hh <= fromIntegral h x ww then hh / fromIntegral h v
& else ww / fromIntegral w
ww = wwl - 128

42

90

95

100

105

110

115

120

125

130

135

140

gulcii src/Draw.hs

hh = hh0 - 64
dx = (ww0 - s * fromIntegral w) / 2
dy = (hh0 - s % fromIntegral h) / 2

drawNames :: L.Term -> Render ()

drawNames (L.Free s (x,y)) = do
e <- textExtents s
moveTo (fromIntegral x — textExtentsWidth e / 2) (fromIntegral y)
textPath s

drawNames .Bound0 _) = return ()
drawNames Scope t _) = drawNames t
drawNames Lambda _ t _) = drawNames t

(L
(L.
(L.
drawNames (L.Apply a b _) = drawNames a >> drawNames b
drawNames (L.RefInst _ t _) = drawNames ¢t
drawNames (L.Reference _ _) = return ()

drawLinks :: Map Integer L.Coords —> L.Term -> Render ()

drawLinks _ (L.Free _ _) =
return ()
drawLinks _ (L.Bound0 _) =

return ()
drawLinks ps (L.Scope t xy) =

let x’y’ = L.coordinates t

in line xy x’y’ >> drawLinks ps t
drawLinks ps (L.Lambda - t xy) =

let x’y’ = L.coordinates t

in line xy x’y’ >> drawLinks ps t
drawLinks ps (L.Apply a b xy) =

let axay = L.coordinates a

bxby = L.coordinates b

in line xy axay >> line xy bxby >> drawLinks ps a >> drawLinks ps b
drawLinks ps (L.Reflnst _ t xy) =

let x’y’ = L.coordinates t

in line xy x’y’ >> drawLinks ps t
drawLinks ps (L.Reference p xy) =

let Just x’y’ = M.lookup p ps

in line xy x’y’

drawVLinks :: [L.Coords] -> L.Term —> Render ()
drawVLinks 1ls (L.Bound0 xy) = case ls of
[] => return () —- should be error?
x'y’:. —> line xy x’y’
drawVLinks 1s (L.Scope t _) = drawVLinks (drop 1 ls) ¢
drawVLinks 1s (L.Lambda _ t xy) = drawVLinks (xy : Is) ¢
drawVLinks 1s (L.Apply s t -) = drawVLinks 1s s >> drawVLinks ls t
drawVLinks Is (L.RefInst _ t _) = drawVLinks Is t
drawVLinks _ _ = return ()

drawNodes :: L.Term -> Render ()
= drawNode

drawNodes n@Q(L. Free - 2) n

drawNodes n@(L.Bound0 _) = drawNode n

drawNodes n@(L. Scope t _) = drawNode n >> drawNodes t

drawNodes n@(L.Lambda t _) = drawNode n >> drawNodes t

drawNodes n@(L. Apply a b _) = drawNode n >> drawNodes a >> drawNodes b
drawNodes n@Q(L. Reflnst t _) = drawNode n >> drawNodes t

drawNodes n@Q(L. Reference _ _) = drawNode n

43

gulcii src/Evaluation.hs

drawNode :: L.Term —> Render ()
145 drawNode n = circle (L.coordinates n) (colour n)

30 src/Evaluation.hs

{_
gulcii —— graphical untyped lambda calculus interpreter
Copyright (C) 2011, 2013 Claude Heiland-Allen

5 This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

10 This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

15 You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

-}
20 module Evaluation (Strategy (..)) where

data Strategy = Lazy | Strict | Copy
deriving (Read, Show, Eq, Ord)

31 src/GC.hs

{_
gulcii —— graphical untyped lambda calculus interpreter
Copyright (C) 2011, 2013, 2017 Claude Heiland-Allen

5 This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

10 This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

15 You should have received a copy of the GNU General Public License along

with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

-}
20 module GC (gc) where
import Graph

import Data.Map as Map
25

44

gulcii src/GC.hs

gc
References —> Term
-> (References, Term)

gc refs term

= let counts = refCount refs term Map.empty
in (Map. fromList
[(r, compact counts refs (refs Map.! r))
| (r, n) <— Map.toList counts
,n> 1]

, compact counts refs term)

type Count = Integer

refCount
References —> Term
—> Map Integer Count -> Map Integer Count

compact
Map Integer Count —> References
—> Term —> Term

refCount refs (Scope a) counts
= refCount refs a counts

refCount refs (Lambda _ a) counts
= refCount refs a counts

refCount refs (Apply a b) counts
= refCount refs a (refCount refs b counts)

refCount refs (Reference r) counts
= case r ‘Map.lookup ‘ counts of

Just n —>
Map. insert r (n + 1) counts
Nothing —>

refCount refs (refs Map.! r)
(Map.insert r 1 counts)

refCount _ _ counts = counts
compact counts refs (Scope term)
= Scope (compact counts refs term)

compact counts refs (Lambda strat term)
= Lambda strat (compact counts refs term)

compact counts refs (Apply a b)
= Apply (compact counts refs a)
(compact counts refs b)

compact counts refs term@(Reference r)

= case r ‘Map.lookup ‘ counts of
Just 1 —> compact counts refs (refs Map.! r)

45

85

10

15

20

25

30

35

40

45

50

gulcii src/Graph.hs

- —> term

compact _ _ term = term

32

{_

-}

src/Graph.hs

gulcii —— graphical untyped lambda calculus interpreter
Copyright (C) 2011, 2013, 2017 Claude Heiland-Allen

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

module Graph (Term(..), Definitions, References, graph, pretty) where

import Data.Map. Strict (Map)

import qualified Bruijn as B
import Evaluation (Strategy (..))

data Term

|
|
|
|
|
d

Free !String

Bound0

Scope !Term

Lambda !Strategy !Term
Apply !Term !Term

Reference !Integer

eriving (Read, Show, Eq, Ord)

pretty :: Term —> String
pretty = concat . pretty’

pretty > :: Term —> [String]

pretty > (Free s) = [s]

pretty > (Bound0) = [707]

pretty ’ (Scope t) = [?S”] ++ pretty’ t

pretty > (Reference i) = [’# :show 1i]

pretty ° (Lambda k t) = ["(”, ”\\”, pretty’’ k] ++ pretty’ t ++ [7)"]
pretty = (Apply s t) = [7(”] ++ pretty’ s ++ [7 7] ++ pretty’ t ++ [7)7]
pretty ’’ Strategy —> String

pretty ’’ Strict = 71”7

pretty ’’ Lazy = 7.”

pretty ’’ Copy = ”?7”

46

55

60

10

15

20

25

30

35

40

45

gulcii

sre/Lambda.hs

type Definitions = Map String Term
type References = Map Integer Term

graph :: B.Term —> Term

graph (B.Free v) = Free v

graph (B.Bound0) = Bound0

graph (B.Scope t) = Scope (graph t)

graph (B.Lambda k t) = Lambda k (graph t)

graph (B.Apply s t) = Apply (graph s) (graph t)

33 src/Lambda.hs

{_
gulcii —— graphical untyped lambda calculus interpreter
Copyright (C) 2011, 2013, 2017 Claude Heiland-Allen

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
with this program; if not, write to the Free Software Foundation,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

-}

along

Inc.,

module Lambda (Term(..), pretty, isFreeln, variablesIn, freeVariablesIn) where

import Data. List (nub)

import Evaluation (Strategy (..))

{-
Untyped lambda calculus terms.

-}

data Term
= Variable String
| Lambda Strategy String Term
| Apply Term Term
deriving (Read, Show, Eq, Ord)

{_
Pretty-print a term.

-}

pretty :: Term -> String
pretty = unwords . pretty’

pretty > :: Term —> [String]
pretty > (Variable v) = [v]
pretty > (Lambda k v t) = ["(”, "\\”, v, pretty’’ k] 4++ pretty’ t ++ [7)"]

47

50

55

60

65

70

75

10

15

20

gulcii src/Layout.hs

pretty ’ (Apply s t) = [7(”] ++ pretty’ s ++ pretty’ t ++ [7)”]
pretty ’’ Strategy —> String

pretty ’’ Strict = 71”7

pretty ’’ Lazy = 7.7

pretty ’’ Copy = "7”

Check if a variable occurs free in a term.

isFreeIn :: String -> Term -> Bool

isFreeIn n (Variable v) =n=—v

isFreeln n (Lambda - v t) = if n = v then False else n ‘isFreeln‘ ¢t
isFreeIn n (Apply t t’) =n ‘isFreeln‘ t || n ‘isFreeln‘ t~’

{_
Get all variable names defined or referenced by a term.

-}

variablesIn :: Term —> [String]

variablesIn (Variable v) = [v]

variablesIn (Lambda _ v t) = nub $ v : variablesIn t

variablesIn (Apply t t’) = nub $ variablesIn t 4+ variablesIn t’

{_
Get all free variables referenced by a term.

-}

freeVariablesIn :: Term -> [String]
freeVariablesIn t = filter (‘isFreeln‘ t) (variablesIn t)

34 src/Layout.hs

{-
gulcii —— graphical untyped lambda calculus interpreter
Copyright (C) 2011, 2013, 2017 Claude Heiland-Allen

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street , Fifth Floor, Boston, MA 02110-1301 USA.

-}

module Layout (Term(..), Coords, Layout(..), layout, coordinates, Counts(..), ¢

& counts) where

import qualified Data.Map. Strict as M

48

25

30

35

40

45

50

55

60

65

70

75

gulcii src/Layout.hs

import Data.Map. Strict (Map)

import qualified Graph as G
import Evaluation (Strategy (..))

type Coords = (Integer, Integer)

data Term
= Free String Coords
| Bound0 Coords
| Scope Term Coords
| Lambda Strategy Term Coords
| Apply Term Term Coords
| RefInst Integer Term Coords
| Reference Integer Coords
deriving (Read, Show, Eq, Ord)

data Layout = Layout Term Integer Integer (Map Integer Coords)
deriving (Read, Show, Eq, Ord)

coordinates :: Term -> Coords

coordinates (Free - Xy) = Xy
coordinates (Bound0 Xy) = Xy
coordinates (Scope . Xy) = Xy
coordinates (Lambda _ _ xy) = xy
coordinates (Apply _ . Xy) = Xy
coordinates (Reflnst Xy) = Xy
coordinates (Reference _ xy) = xy

layout :: G.Term —-> G.References —> Layout

layout = layout’ (0, 0) M.empty

layout’ :: Coords —> Map Integer Coords -> G.Term —-> G.References -> Layout
layout ’ xy ps (G.Free v) _ =

Layout (Free v xy) 1 1 ps
layout’ xy ps (G.Bound0) _ =

Layout (Bound0 xy) 1 1 ps
layout’ (x, y) ps (G.Scope t) g =

let Layout 1t w h ps’ = layout’ (x, y + 1) ps t g

(px, -) = coordinates 1t

in Layout (Scope It (px, y)) w (h + 1) ps’
layout’ (x,y) ps (G.Lambda k t) g =
let Layout 1t w h ps’ = layout’ (x, y + 1) ps t g
(px, -) = coordinates 1t

in Layout (Lambda k 1t (px, y)) w (h + 1) ps’
layout’ (x,y) ps (G.Apply a b) g =
let Layout la aw ah psa = layout’ (
Layout 1b bw bh psb = layout’ (
in Layout (Apply la 1lb (x + aw, y)
layout ’ xy@(x,y) ps (G.Reference p) g
if p ‘M.member‘ ps
then Layout (Reference p xy) 1 1 ps
else case M.lookup p g of
Nothing —> error $ ”layout ’: bad pointer: ” ++ show p
Just t —>
let Layout 1t w h pst = layout’ (x, y + 1) ps t g
(px, py) = coordinates 1t

49

80

85

90

95

100

10

15

20

25

gulcii src/Main.hs
in Layout (RefInst p 1t (px, y)) w (1 + h) (M.insert p (px, py) pst)
data Counts = Counts
{ nFree, nBound0O, nScope, nLambda, nApply, nReflnst, nReference :: !Int }

instance Monoid Counts where
mempty = Counts 0 0 0 0 0 0 O
mappend ¢ d = Counts

counts
counts
counts
counts
counts
counts
counts
counts

{ nFree = nFree ¢ + nFree d

nBound0 = nBound0 ¢ 4+ nBoundO d
nScope = nScope ¢ + nScope d
nLambda = nLambda ¢ 4+ nLambda d

, nApply = nApply ¢ + nApply d
nReflnst = nReflnst ¢ + nReflnst d

, nReference = nReference ¢ + nReference d
}
Term -> Counts

(Free - _) = mempty{ nFree =1 }
(Bound0 _) = mempty{ nBound0 = 1 }
(Scope t _) = let ¢ = counts t in c{ nScope = nScope ¢ + 1 }
(Lambda - t -) = let ¢ = counts t in c¢{ nLambda = nLambda ¢ + 1 }
(Apply a b _) = let ¢ = counts a ; d = counts b in mappend c d
(RefInst - t _) = let ¢ = counts t in c¢{ nRefIlnst = nReflnst ¢ + 1 }
(Reference _ _) = mempty{ nReference = 1 }

35 src/Main.hs

{_

gulcii —— graphical untyped lambda calculus interpreter
Copyright (C) 2011, 2013, 2017 Claude Heiland-Allen

This program is free software; you can redistribute it and/or modify

it

under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,

51
-}

module

import
import

Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Main (main) where

Control. Applicative ((<$>))
Control.Concurrent (forkIO, killThread , threadDelay, newChan, readChan, v

& writeChan)

import
import
import
import
import

50

Control.Monad (forever , when, unless, forM.)

qualified Data.Map. Strict as M

Data.Maybe (isJust)

Data.IORef (IORef, newlORef, readlORef, writeIORef, atomicModifyIORef)
System .IO (hSetBuffering , BufferMode(LineBuffering), stdout)

30

35

40

45

50

55

60

65

70

75

80

85

gulcii src/Main.hs

import System.IO.Error (catchIOError)

import System.FilePath ((</>), (<.>))

import Graphics.UIL.Gtk hiding (Meta, Settings)

import Graphics.Rendering. Cairo hiding (width, height)

import Paths_gulcii (getDataFileName)

import qualified Command as C
import qualified Meta as M
import Setting (Settings)
import qualified Setting
import qualified Sugar as S
import qualified Bruijn as B
import qualified Graph as G
import qualified GC as GC
import qualified Reduce as R
import qualified Layout as L
import qualified Draw as D
import qualified Parse as P

data Interpret = Fail | Skip | Define String G.Term | Pure G.Term | Meta M. Meta
deriving (Read, Show, Eq, Ord)

interpret :: String —> Interpret
interpret 1 =
case P.unP C.parse ‘fmap‘ P.tokenize (P.decomment 1) of
Just ((C.Define d sterm, []):.) —>
case S.desugar sterm of
Just term -> Define d . G.graph . B.bruijn $ term
- —> Fail
Just ((C.Evaluate sterm, []):.) —>
case S.desugar sterm of
Just term -> Pure . G.graph . B.bruijn $§ term

- —> Fail
Just ((C.Meta m, []):-) —> Meta m
Just [] —> Skip
- —> Fail

main :: IO ()
main = do
args <- initGUI
let (width, height, fullscreen) = case args of
[w,h,” fullscreen”] —> (read w, read h, True)
[w,h] —> (read w, read h, False)
_ —> (1280, 720, False)
envR <- newIORef M.empty
l1Ref <- newlORef Nothing
evalR <- newIORef Nothing
settingsR <- newIORef Setting.defaults
outC <- newChan
let out = writeChan outC
win <- windowNew
_ <- onDestroy win mainQuit
windowSetDefaultSize win width height
when fullscreen $ do
windowSetGeometryHints win (Nothing ‘asTypeOf‘ Just win)
(Just (width, height)) (Just (width, height)) Nothing Nothing Nothing

o1

90

95

100

105

110

115

120

125

130

135

140

gulcii

src/Main.hs

52

set win [windowDecorated := False |

windowSetKeepAbove win True
windowMove win 0 0
vb <- vBoxNew False 0

hb <- hPanedNew

tt <- textTagTableNew

textTagNew Nothing
textTagNew Nothing
textTagNew Nothing
textTagNew Nothing
textTagNew Nothing
textTagNew Nothing
textTagNew Nothing
textTagNew Nothing

tagInputRem <-
taglnputDef <-
taglnputPure <-
taglnputRun <-
taglnputMeta <-

tagOutput <-
tagOutputMeta <-
tagError <-

set taglnputRem
set taglnputDef
set taglnputPure
set taglnputRun
set taglnputMeta
set tagOutput

set tagOutputMeta

set tagError

textTagTableAdd
textTagTableAdd
textTagTableAdd
textTagTableAdd
textTagTableAdd
textTagTableAdd
textTagTableAdd
textTagTableAdd

tt
tt
tt
tt
tt
tt
tt
tt

[
[
[
[
[
[
[
[

textTagForeground
textTagForeground
textTagForeground
textTagForeground
textTagForeground
textTagForeground
textTagForeground
textTagForeground
tagInputRem
taglnputDef
taglnputPure
tagIlnputRun
taglnputMeta
tagOutput
tagOutputMeta
tagError

tf <- textBufferNew (Just tt)
tb <- textBufferNew (Just tt)
tv <- textViewNewWithBuffer tf
mk <- textMarkNew Nothing False

it <- textBufferGetlterAtOffset tf (-1)

textBufferAddMark tf mk it
textViewSetEditable tv False
textViewSetWrapMode tv WrapWord
da <- drawingAreaNew

_ <- da ‘on‘ exposeEvent $ do

dw <- eventWindow

liftIO $ do

ml <- atomicModifyIORef 1Ref (\m —> (Nothing, m))

case ml of

Nothing -> return ()

Just 1 —> do
(ww, hh) <- drawableGetSize dw

renderWithDrawable dw $ do

D.draw (fromIntegral ww) (fromIntegral hh) 1

return True
en <— entryNew

entrySetWidthChars en 25
font <- fontDescriptionFromString ”Monospaced 18”
widgetModifyFont tv (Just font)
widgetModifyFont en (Just font)

sw <- scrolledWindowNew Nothing Nothing
scrolledWindowSetPolicy sw PolicyAutomatic PolicyAlways

”cyan”
”green”
7 yellow”
”orange”

—_” blue”

= ”magenta”

” pink”
” red”

145

150

155

160

165

170

175

180

185

190

195

gulcii src/Main.hs

containerAdd sw tv
al <- alignmentNew 1 0 1 1

set al [containerChild := da]
if Setting.newsOnTop Setting.defaults
then do

boxPackStart vb en PackNatural 0O
boxPackStart vb sw PackGrow 0
else do
boxPackStart vb sw PackGrow 0
boxPackStart vb en PackNatural 0
panedPackl hb vb False True
panedPack2 hb al True True

set win [containerChild := hb |
containerSetFocusChain vb [toWidget en]
let scrollDown = do

textViewScrollToMark tv mk O Nothing
addText tag txt = do
newsOnTop <- Setting.newsOnTop <$> readlORef settingsR
start > <- textBufferGetlterAtOffset tb 0
end’ <- textBufferGetlterAtOffset tb (-1)
textBufferDelete tb start’ end’
textBufferInsert tb start’ (unlines [txt])
start <- textBufferGetlterAtOffset tb 0
end <- textBufferGetlterAtOffset tb (-1)
textBufferApplyTag tb tag start end
pos <— textBufferGetlterAtOffset tf (if newsOnTop then 0 else -1)
textBufferInsertRange tf pos start end
pos’ <- textBufferGetIterAtOffset tf (if newsOnTop then 0 else -1)
textBufferMoveMark tf mk pos’
_ <- en ‘onEntryActivate‘ do
let exec echo txt =
case interpret txt of
Fail —> addText tagError txt
Skip —> when echo $ do
addText taglnputRem txt
entrySetText en 7”7
Define def term -> do
when echo $ do
addText taglnputDef txt
entrySetText en 77
atomicModifyIORef envR (\defs -> (M.insert def term defs, ()))
Pure term -> do
when echo $ do
addText taglnputPure txt
entrySetText en 77
mtid <- readlORef evalR
case mtid of
Nothing —> return ()
Just tid -> killThread tid

tid <- forkIO $ evaluator ”gulcii-" 0 settingsR 500000 1Ref out v

& envR M.empty term goPure
writeIORef evalR (Just tid)
Meta M. Start -> do
when echo $ do
addText taglnputMeta txt
entrySetText en 77
_ <— forkIO $ do

53

200

205

210

215

220

225

230

235

240

245

250

gulcii

src/Main.hs

out ”"start;”
return ()
Meta M. Stop —> do
when echo $ do
addText taglnputMeta txt
entrySetText en 77
_ <- forkIO $ do
out ”stop;”
return ()
Meta M. Quit —> do
_ <- forkIO $ do
out ”quit;”
postGUISync mainQuit
return ()
Meta M. Clear -> do
when echo $ do
addText taglnputMeta txt
entrySetText en 77
atomicModifyIORef envR (\- -> (M.empty, ()))
Meta M. Browse —> do
when echo $ do
addText taglnputMeta txt
entrySetText en 77
defs <- readlORef envR
addText tagOutputMeta(unwords (M. keys defs))
Meta (M.Load f) —> do
when echo $ do
addText taglnputMeta txt
f’ <- getDataFileName (”1ib” </> f <.> "gu”)
s <- (fmap Right (readFile f’)) ‘catchlIOError‘ (return
& show)
case s of
Right t -> do
when echo $ do
entrySetText en
mapM_ (exec False) (lines t)
Left e —>
addText tagError e
Meta (M.Get s) —> do
when echo $ do
addText taglnputMeta txt
entrySetText en 77
addText tagOutputMeta . ((show s ++ 7 = 7) ++) . show
G get s =< readlORef settingsR
Meta (M.Set s) -> do
when echo $ do
addText taglnputMeta txt
entrySetText en 77

29

Left . »

Setting . v

atomicModifyIORef settingsR $ (\ss —> (Setting.set s True ss, ()))

addText tagOutputMeta . ((show s ++ 7 = 7) ++) . show
& get s =<< readlORef settingsR
Meta (M.UnSet s) —> do
when echo $ do
addText taglnputMeta txt
entrySetText en 77

Setting .~

atomicModifyIORef settingsR $ (\ss -> (Setting.set s False ss, ())v¥

S

54

255

260

265

270

275

280

285

290

295

300

gulcii src/Main.hs

addText tagOutputMeta . ((show s ++ 7 = 7) ++) . show . Setting.v
L get s =< readlORef settingsR
Meta (M. Toggle s) —> do
when echo $ do
addText taglnputMeta txt
entrySetText en 77
atomicModifyIORef settingsR § (\ss -> (Setting.set s (not (Settingy
G .get s ss)) ss, ()))
addText tagOutputMeta . ((show s ++ 7 = 7) ++) . show . Setting.v
G get s =< readlORef settingsR
txt <— entryGetText en
exec True txt
scrollDown

_ <- forkIO $ do

hSetBuffering stdout LineBuffering

forever $ do
settings <- readlORef settingsR
s <- readChan outC
when (Setting.echoToStdOut settings) $ putStrLn s
when (Setting.echoToGUI settings) $ postGUIAsync (addText tagOutputy

& s >> scrollDown)

_ <— flip timeoutAdd 10 $ do
ml <- atomicModifyIORef 1Ref (\m —> (m, m))
when (isJust ml) $ widgetQueueDraw da
return True

widgetShowAll win

mainGUI

type Go = G. References —> G.Term —> IO (G.Term, G.References)

goPure :: Go

goPure refs term = return (term, refs)

evaluator :: String —> Int —> IORef Settings -> Int -> IORef (Maybe L.Layout) ->v»
& (String —> IO ()) —> IORef G.Definitions —-> G.References -> G.Term -> Go ~
L > 10 ()

evaluator pngPrefix frame settingsR tick layout out defsR refs term go = do

defs <- readlORef defsR
settings <- readlORef settingsR
when (Setting.traceEvaluation settings) $ do

out $ 7 7 44 G.pretty term
unless (M.null refs) $ do
out ” where”
forM_ (M. toList refs) $ \(r, t) —> do
out § 7 # ++ show r 4+ 7 =7 44 G.pretty ¢

let (refsl, terml)
| Setting.collectGarbage settings = GC.gc refs term
| otherwise = (refs, term)
collectedGarbage = terml /= term || refsl /= refs
when (Setting.traceEvaluation settings && collectedGarbage) $ do
out 7$\\to$ {- collect garbage -}”
out $ 7 7 44 G.pretty terml
unless (M.null refsl) $ do
out ” where”
forM_ (M. toList refsl) $§ \(r, t) —> do

%)

gulcii src/Meta.hs

out § 7 #" ++ show r ++ 7 =7 4+ G.pretty t
(term0O, refs0) <- go refsl terml
305 (1, L.Counts ¢l ¢2 ¢3 c4 cb ¢6 c7) <- atomicModifyIORef layout § _. —>
let 1@(L.Layout 1t - - _) = L.layout termO refsO

in (Just 1, (1, L.counts 1t))
when (Setting.savelmages settings) $ do
withImageSurface FormatRGB24 1920 1080 $ \surface -> do
310 renderWith surface $ do
let g = 23 / 255
setSourceRGB g g g

paint
D.draw 1920 1080 1
315 surfaceWriteToPNG surface (pngPrefix ++ show frame ++ ”.png”)

when (Setting.emitStatistics settings) $ do

out $ ”"statistics 7 ++ unwords (map show [cl,c2,c3,c4,c¢5,c6,c7]) ++ 737
when (Setting.realTimeDelay settings) $ do

threadDelay tick

320 let tick’
| Setting.realTimeAcceleration settings = ceiling (fromIntegral tick x v
& 0.97 4+ 0.03 * 42000 :: Double)
| otherwise = tick

case R.reduce defs refsO0 termO of
Nothing —> do
325 when (Setting.traceEvaluation settings) $ do
out ”$\\to$ {- in normal form -}”
out 7 $\\gedsymbol$”
when (Setting.retrylrreducible settings) $ do
evaluator pngPrefix (frame + 1) settingsR tick layout out defsR refsO0 v

& termO go
330 Just (reason, (refs’, term’)) -> do
when (Setting.traceEvaluation settings) $ do
out § "$\\to$ {- 7 4++ (case reason of

R.Beta —> " beta reduce”
R.Reflnst —> ”instantiate reference”

335 R.Rebound var -> ”definition of \"” ++ var ++ 7\””
R.Extrude —-> ”scope extrude”
) _’_'_ ” _}77
evaluator pngPrefix (frame + 1) settingsR tick’ layout out defsR refs’ v
& term’ go

36 src/Meta.hs

{_
gulcii —— graphical untyped lambda calculus interpreter
Copyright (C) 2011, 2013, 2017 Claude Heiland-Allen

5 This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

10 This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

15 You should have received a copy of the GNU General Public License along

56

20

25

30

35

40

10

15

20

25

gulcii src/Parse.

hs

with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

-}

module Meta (Meta(..), parse) where

import Control. Applicative((<|>), (<$), (<x>))
import Setting (Setting)

import qualified Setting

import Parse

data Meta = Start | Stop | Quit | Clear | Browse | Load String | Get Setting | v
 Set Setting | UnSet Setting | Toggle Setting
deriving (Read, Show, Eq, Ord)

<|>
<|>

UnSet <$ sym ”unset” <#> Setting.parse)
Toggle <$ sym ”toggle” <x> Setting.parse)

parse :: Parser String Meta
parse = (Start <$ sym ”start”)
<|> (Stop <3 sym ”stop”)
<[> (Quit <$ sym ”quit”)
<|> (Clear <$ sym ”clear”)
<|> (Browse <$ sym ”browse”)
<|> (Load <$ sym ”load” <*> name)
<[> (Get <$ sym ”get” <> Setting.parse)
<|> (Set <% sym ”set” <> Setting.parse)
(
(

37 src/Parse.hs

{_
gulcii —— graphical untyped lambda calculus interpreter
Copyright (C) 2011, 2013, 2017 Claude Heiland-Allen

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

-}
module Parse where

import Control. Applicative (Applicative, Alternative , pure, empty, (<|>), (<$>),
G o(<>), (<))

{-
Strip comments

e

o7

30

35

40

45

50

55

60

65

70

75

80

gulcii src/Parse.hs

A comment is everything from ’'#’ to the end of the line.

-}

decomment :: String -> String
decomment = concatMap (fst . break (#’==)) . lines

{_
Tokenize

digits :: String
digits = 70123456789”

lowers :: String
lowers = ”abcdefghijklmnopqrstuvwxyz”
uppers :: String

uppers = "ABCDEFGHIKLMNOPQRSTUVWXYZQ"

alpha :: String
alpha = lowers ++ uppers

alphanum :: String
alphanum = alpha 4++ digits

symbols :: String
symbols = "\\.!?7()[],="

spaces :: String
spaces = 7 7

{_

Split a string into tokens (each itself a string), such that each token
consists of either all digits, all letters, or a single symbol. Use
whitespace to separate tokens.

-}

tokenize :: String —> Maybe [String]
tokenize [] = Just []
tokenize (c:cs)
| ¢ ‘elem‘ digits = let (t,ts) = span (‘elem‘ digits) cs

in ((c:t):) <$> tokenize ts
| ¢ ‘elem‘ uppers

||c ‘elem ¢ lowers = let (t,ts) = span (‘elem‘ alphanum) cs
in ((c:t):) <$> tokenize ts

| ¢ ‘elem*‘ symbols = ([c]:) <$> tokenize cs

| ¢ ‘elem‘ spaces = tokenize cs

| otherwise = Nothing

{-
Parsing primitives

A parser takes a list of tokens to a list of possible partial parses.

-}

58

gulcii src/Parse.hs

85 newtype Parser s t = P{ unP :: [s] —> [(t, [s])] }

instance Functor (Parser s) where
fmap f (P p) =P (\q > [(fv, s) | (v,s) <-pgq])

90 instance Applicative (Parser s) where

P
pure f =P (\q > [(f, q)])
Ppl<s>Pp2=P (\q-—> [(uv, t) | (u, s) <-pl q, (v, t) <-p2 s |)

instance Alternative (Parser s) where
95 empty = P (\. —=> [])
P pl <[> P p2 =P (\q -> pl q ++ p2 q)

{-

Accept a token that satisfies a predicate.
100 -}

satisfy :: (s —> Bool) -> Parser s s

satisfy p =P (\q —> case q of
(x:xs) | p x > [(x,x8)]
105 - =1

{-
Accept a specific token.
-}
110
sym :: Eq s = s —> Parser s s
sym a = satisfy (== a)

{_

115 Accept some p’s separated by s’s.

-}
someSep :: Parser s a -> Parser s t —> Parser s [t]
someSep s p = ((:[]) <8>p) <|> ((:) <$> p <* s <*> someSep s p)
120
{_
Accept some p’s separated by s’s, or nothing.
-}
125 manySep :: Parser s a -> Parser s t —> Parser s [t]
manySep s p = pure [| <|> someSep s p
{-
Accept a name consisting of letters.
130 -}
name :: Parser String String
name = P (\q -> case q of
(p@Q(r:-):ps) | r ‘elem*‘ lowers —> [(p, ps)]
135 - —=> [
{-
Accept an integer consisting of digits.
-}
140

99

10

15

20

25

30

35

40

45

50

gulcii src/Reduce.hs
integer Parser String Integer
integer = P (\q —> case q of

(p:ps) | all (‘elem‘ digits) p —> [(read p, ps)]

- >

38 src/Reduce.hs

{,

gul

Copyright (C) 2011, 2013, 2017

Thi

cii —— graphical untyped lambda calculus interpreter

s program is free software; you can redistribute

Claude Heiland-Allen

it and/or modify

it under the terms of the GNU General Public License as published by

the
(at

Thi

Free Software Foundation; either version 2 of the License,

your option) any later version.

s program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

GNU General Public License for more details.

See the

You should have received a copy of the GNU General Public License along

with this program; if not, write to the Free Software Foundation,

51
-}

module
import
import

import
import

{-
Reduce
-}

Franklin Street , Fifth Floor, Boston, MA 02110-1301 USA.

Reduce (Reduce(..), Reduction, reduce) where
Prelude hiding (replicate)

qualified Data.Map. Strict as Map

Evaluation (Strategy (..))

Graph

a graph one step, returning Nothing if it is

irreducible .

data Reduce = Beta | Reflnst | Rebound String | Extrude

deriv

ing (Read, Show, Eq, Ord)

type Reduction = (Reduce, (References, Term))

mapTerm (Term —> Term) —-> Reduction —> Reduction
mapTerm f = fmap (fmap f)
reduce Definitions —-> References —-> Term -> Maybe Reduction
reduce defs refs term =
case reduce’ False defs refs term of

Nothing —> reduce’ True defs refs term

r > r
reduce’ Bool => Definitions —> References —> Term —-> Maybe Reduction

60

Inc.,

gulcii src/Reduce.hs

reduce’ _ defs refs (Free var)
= (,) (Rebound var) ‘fmap‘ (,) refs ‘fmap‘ Map.lookup var defs

reduce’ _ _ - (Bound0)
55 = Nothing
reduce’ _ _ refs (Scope (Lambda strat term))

= Just (Extrude, (refs, Lambda strat (lifting refs 1 term)))

60 reduce’ f defs refs (Scope t@Q(Reference _))
= case dereference refs t of
l@ (Lambda - _) —>
Just (Reflnst, (refs, Scope 1))
_ —> mapTerm Scope ‘fmap‘ reduce’ f defs refs t

65
reduce’ _ _ refs (Scope (Apply a b))
= Just (Extrude, (refs, Apply (Scope a) (Scope b)))
reduce’ f defs refs (Scope term)
70 = mapTerm Scope ‘fmap‘ reduce’ f defs refs term

reduce’ f defs refs (Lambda strat term)
= mapTerm (Lambda strat) ‘fmap‘ reduce’ f defs refs term

75 reduce’ f defs refs term@(Reference ref)
= case Map.lookup ref refs of
Just refTerm ->
case reduce’ f defs refs refTerm of

Just (reason, (refs’, term’)) —>
80 Just (reason, (Map.insert ref term’ refs’, term))
Nothing —>
Just (RefInst, (refs, refTerm))
Nothing -> Nothing -- error ”reference not found”
85 reduce’ _ _ refs (Apply (Lambda Copy a) b)

= Just (Beta, (refs, beta refs a b))

reduce’ f defs refs (Apply 1@(Lambda Strict a) b)
= case reduce’ f defs refs b of
90 Just (reason, (refs’, b’)) -> Just (reason, (refs’, Apply 1 b’))
Nothing -> Just (Beta, (refs, beta refs a b))

reduce’ _ _ refs (Apply (Lambda Lazy a) b)
= let r = next refs
95 refs ’ = Map.insert r b refs

in Just (Beta, (refs’
, beta refs

’

a (Reference r)))

reduce’ f defs refs (Apply a b)

100 = case (a, dereference refs a) of
(Reference -, l@(Lambda - _)) —> Just (Reflnst, (refs, Apply 1 b))
- >
case reduce’ f defs refs a of
Just (reason, (refs’, a’)) —>
105 Just (reason, (refs’, Apply a’ b))
Nothing

| f —> mapTerm (Apply a) ‘fmap‘ reduce’ f defs refs b

61

gulcii src/Setting.hs

| otherwise —> Nothing

110
beta :: References —> Term —> Term —> Term
beta refs | v = substitute refs 1 v 0
substitute :: References -> Term —> Term -> Integer —> Term
115 substitute _ Bound0 s 0 = s
substitute _ Bound0 _ _ = Bound0
substitute _ (Scope t) - 0 =t
substitute refs (Scope t) s i = Scope (substitute refs t s (i - 1))
substitute refs (Lambda k t) s i = Lambda k (substitute refs t s (i + 1))
120 substitute refs (Apply a b) s i = Apply (substitute refs a s i) (substitute refsv
G bs i)
substitute _ t@(Free _) - _ =t
substitute refs (Reference r) s i = substitute refs (refs Map.! r) s i
lifting :: References —> Integer —> Term -> Term
125 lifting _ 0 t = Scope t
lifting _ _ s@(Free _) = s
lifting _ Bound0 = BoundO

lifting refs
lifting refs
130 lifting refs
lifting refs

(Scope t) = Scope (lifting refs (i - 1) t)

(Lambda k t) = Lambda k (lifting refs (i + 1) t)

(Apply a b) = Apply (lifting refs i a) (lifting refs i b)
(Reference r) = lifting refs i (refs Map.! r)

.o e e |

dereference :: References —> Term -> Term
135 dereference refs (Reference r) = dereference refs (refs Map.! r)
dereference _ t =t
next :: References -> Integer
140 next refs = case Map.maxViewWithKey refs of
Nothing > 0

Just ((k,-),-) > k + 1

39 src/Setting.hs

{_
gulcii —— graphical untyped lambda calculus interpreter
Copyright (C) 2011, 2013, 2017 Claude Heiland-Allen

5 This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

10 This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

15 You should have received a copy of the GNU General Public License along

with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

62

20

25

30

35

40

45

50

55

60

65

70

75

gulcii src/Setting.hs

module Setting (Setting (..), parse, Settings(..), get, set, defaults) where

import Control. Applicative ((<$))
import Data.Foldable (asum)

import Parse

data Setting
= TraceEvaluation
| CollectGarbage
| RealTimeDelay
| RealTimeAcceleration
| Retrylrreducible
| EmitStatistics
| EmitRebindings
| EchoToStdOut
| EchoToGUI
| Savelmages
| NewsOnTop

deriving (Eq, Ord, Enum, Bounded, Read, Show)

parse :: Parser String Setting
parse = asum [s <$ sym (show s) | s <- [minBound .. maxBound :: Setting]]

data Settings = Settings

{ traceEvaluation :: Bool

, collectGarbage :: Bool

, realTimeDelay :: Bool

, realTimeAcceleration :: Bool
, retrylrreducible :: Bool

, emitStatistics :: Bool

, emitRebindings :: Bool

, echoToStdOut :: Bool
, echoToGUI :: Bool

, savelmages :: Bool

, newsOnTop :: Bool

}
get :: Setting -> Settings —-> Bool
get TraceEvaluation = traceEvaluation

get CollectGarbage = collectGarbage

get RealTimeDelay = realTimeDelay

get RealTimeAcceleration = realTimeAcceleration
get Retrylrreducible = retrylrreducible

get EmitStatistics = emitStatistics

get EmitRebindings = emitRebindings

get EchoToStdOut = echoToStdOut

get EchoToGUI = echoToGUI

get Savelmages = savelmages

get NewsOnTop = newsOnTop

set :: Setting -> Bool —-> Settings —> Settings

set TraceEvaluation b s = s{ traceEvaluation = b }

set CollectGarbage b s = s{ collectGarbage = b }

set RealTimeDelay b s = s{ realTimeDelay = b }

set RealTimeAcceleration b s = s{ realTimeAcceleration = b }

63

80

85

90

95

10

15

20

25

30

gulcii

src/Sugar.hs

set
set
set
set
set
set
set

Retrylrreducible
EmitStatistics b

b b }
S

EmitRebindings b s
s{

s = s{ retrylrreducible
= s{ emitStatistics = b
s{ emitRebindings = b
EchoToStdOut b s s{ echoToStdOut = b }
EchoToGUI b s = echoToGUI = b }
Savelmages b s = s{ savelmages = b }

NewsOnTop b s = s{ newsOnTop = b }

—~ - ||

defaults :: Settings
defaults = Settings

{

)
)
)
)
)
)
)
)
)

)

}
40

{_

-}
{_

traceEvaluation = False
collectGarbage = True
realTimeDelay = True
realTimeAcceleration = True
retrylrreducible = True
emitStatistics = True
emitRebindings = True
echoToStdOut = True
echoToGUI = False
savelmages = False
newsOnTop = True

src/Sugar.hs

gulcii —— graphical untyped lambda calculus interpreter
Copyright (C) 2011, 2013, 2017 Claude Heiland-Allen

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street , Fifth Floor, Boston, MA 02110-1301 USA.

Sugared term parser

Grammar

64

35

40

45

50

55

60

65

70

75

80

85

gulcii src/Sugar.hs

module Sugar(Term(..) , parse, desugar) where

import Control. Applicative((<|>), (<$>), (<$), (<*>), (<x*), some, liftA2)
import Data. List ((\\))

import Parse
import qualified Lambda as U
import Evaluation (Strategy (..))

data Term
= Variable String

| Lambda Strategy [String] Term
| Apply [Term]

| Group Term

| Natural Integer

| List [Term]

deriving (Read, Show, Eq, Ord)
parse :: Parser String Term
parse = Apply <$> some parse

)

parse’ :: Parser String Term
parse’ = (flip Lambda <$ sym ”7\\” <*> some name <x> strategy <#> parse)
<|> (Group <$ sym ”(” <*> parse <x sym ”)”)
<|> (Variable <$> name)
<|> (Natural <$> integer)
<[> (List <$ sym ”[” <*> manySep (sym ”,”) parse <x sym ”]”)
strategy :: Parser String Strategy
strategy = (Strict <$ sym ”!7) <|> (Lazy <% sym ”.”) <|> (Copy <$ sym 77”)

{_
A list of all possible legal variable names, need to generate fresh
variables (ie, names guaranteed to be unused in a given term).

-}

variables :: [String]
variables = [v:vs | vs <- [] : variables, v <- [’a’..’z’]]

{_

Desugar according to the following conventions:

Outermost parentheses are dropped:
M N means of (M N)

Applications are left associative:
M N P means (M N) P

The body of an abstraction extends as far right as possible
\x.M N means \x.(M N) and not (\x.M) N

A sequence of abstractions are contracted:
\x.\y.\z.N is abbreviated as \x y z.N

Desugar naturals with their Scott-encoding:

0 > \s z . z

65

90

95

100

105

110

115

120

gulcii stack-10-5.yaml

(14n) -> \s z . s (desugar n)

Desugar lists with their Scott-encoding:

[>\ cmn . n

(x:xs) => \ ¢ n . ¢ (desugar x) (desugar xs)
-}
desugar :: Term —-> Maybe U.Term
desugar (Variable v) = Just $ U.Variable v
desugar (Lambda _ [] _) = Nothing
desugar (Lambda k [v] t) = fmap (U.Lambda k v) $ desugar t
desugar (Lambda k (v:vs) t) = fmap (U.Lambda k v) $ desugar (Lambda k vs t)
desugar (Apply []) = Nothing
desugar (Apply ts) = foldll (liftA2 U.Apply) (map desugar ts)
desugar (Group t) = desugar t

(

desugar (Natural 0) = Just $ lam 7s” (lam ”z” (U.Variable 7z7))
desugar (Natural n) =
let Just nn = desugar (Natural (n - 1))
(s:z:_) = variables \\ U.freeVariablesIn nn
in Just $§ lam s (lam z (U.Apply (U.Variable s) nn))
desugar (List []) = Just $ lam ”c¢” (lam ”n” (U.Variable ”"n”))
desugar (List (1l:1s)) =
let t = desugar 1
ts = desugar (List Is)
in case (t,ts) of
(Just t’, Just ts’) —>
let (c:n:_) = (variables \\ U.freeVariablesIn t’) \\ U.freeVariablesIn ts’
in Just $ lam ¢ (lam n (U.Apply (U.Apply (U.Variable c¢) t’) ts’))
_ —> Nothing

lam :: String —-> U.Term —> U.Term
lam = U.Lambda Lazy

41 stack-10-5.yaml

resolver: 1ts —-10.5

packages:

extra—deps:
- gtk-0.14.7
- gio-0.13.4.1

66

