oeis-diagrams

Claude Heiland-Allen

2016-2018

Contents

1 2016/A134169.hs 2
2 2018/A005905.18 4
3 2018/A056283.18 7
4 2018/A070211.18 . . . o o o 8
5 2018/AT18890.1S . . . o o e 10
6 2018/A121551.hs 11
7 2018/A124255.08 13
8 2018/A133736.hs 14
9 2018/A149037.hs 16
10 2018/A213497.h8 .« . o o ot 19
11 2018/A229915.18 .« . o v vt 20
12 2018/A240059.18 . . . o o o 22
13 2018/A267255.18 .« . o o v 23
14 2018/A271996.hs 24
15 35/A000292.hs 25
16 69/A003269.hs 26
17 70/A000129.hs o 27
18 70/A000332.hs o 28
19 70/A000984.hs o 30
20 TO/A001405.18 . . . oot 31
21 T0/A002623.18 o e 32
22 72/A002620.hs 33
23 92/A000124.hs 34
24 CC-BY-NC.md 37
25 gIBIgNOTE L e e 43
26 README.md 43

1 2016/A134169.hs

—— oeis—-diagrams —-— unofficial diagrams of OEIS sequences
—-— Copyright (C) 2016-2017 Claude Heiland-Allen
—— License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

—— https://oeis.org/A134169

—— Let P(A) be the power set of an n-element set A. Then a(n) = the number of
—— pairs of elements {x,y} of P(A) for which either (Case 0) x and y are

—— disjoint , x is not a subset of y, and y is not a subset of x; or (Case 1)
—— x and y are intersecting , but x is not a subset of y, and y is not a subset
—— of x; or (Case 2) x and y are intersecting , and either x is a proper subset
—— of y, or y is a proper subset of x; or (Case 3) x =y.

{-# LANGUAGE FlexibleContexts #-}

15

20

25

30

35

40

45

50

55

60

65

oeis-diagrams 2016/A134169.hs

import Prelude hiding (null)
import Data.Bits (bit, finiteBitSize , testBit, (.&.))

import Data.Set (Set)
import qualified Data.Set as S

import Diagrams.Prelude hiding (intersection)
import Diagrams.Backend .PGF.CmdLine (B, defaultMain)

type Z = Int
type S = Int
type P = Set S

intersection :: S -> S -> S
intersection = (.&.)

¢

isSubsetOf :: S -> S -> Bool
= (x ¢

x ‘isSubsetOf‘ y x ‘intersection ‘ y) = x

isProperSubsetOf :: S -> S —-> Bool
x ‘isProperSubsetOf ¢ y = (x ‘isSubsetOf‘ y) & x /=y

null :: S —> Bool

null x =x =20

member :: Z -> S -> Bool

member i x = testBit x i

toList :: S —> [Z]

toList x = [1 | i <= [0 .. finiteBitSize x — 1], i ‘member‘ x]
nset :: Z —> S

nset n = bit n - 1

npower :: Z -> P

npower n = S.fromList [0 .. bit n - 1]

data T=A | B | C | D

t :: S -—> S -> Maybe T
t xy
| v > x = Nothing
| null (x ‘intersection ‘ y) && not (x ‘isSubsetOf‘ y) && not (y ‘v
& isSubsetOf‘ x) = Just A
| not (null (x ‘intersection ‘ y)) && not (x ‘isSubsetOf‘ y) && not (y ‘v
& isSubsetOf‘ x) = Just B
| not (null (x ‘intersection ‘ y)) && ((x ‘isProperSubsetOf‘ y) || (y ‘¥
& isProperSubsetOf‘ x)) = Just C
| x =1y = Just D
| otherwise = Nothing
label is x = [square 2 # strokeP # lc black # fc (if i ‘member‘ x then black »

& else white) # pad 2 | i <- is |
xlabel s x = vcat $ label (reverse $ toList s) x
ylabel s y = hcat $§ label (toList s) y

70

75

80

85

90

95

100

105

110

oeis-diagrams 2018/A005905.hs

withEnvelope’ :: Diagram B -> Diagram B -> Diagram B
withEnvelope’ = withEnvelope
cell :: Maybe T —> Diagram B

cell Nothing = withEnvelope’ (square 2) mempty

cell (Just A) = circle 1 # strokeP # lc red

cell (Just B) = triangle 2 # centerXY # strokeP # lc green

cell (Just C) = square 2 # strokeP # lc magenta

cell (Just D) = (p2 (-1, -1) "7 p2 (1, 1) ‘atop‘ p2 (1, -1) "7 p2 (-1, 1)) # lc v
& blue

diagram n = lwL 0.25 . vcat $
(hcat $ (++[withEnvelope’ (ylabel s 0) mempty]) [xlabel s x | x <- S.toList v
Sp]
[hcat $§ (++[ylabel s y]) [cell (t x y) # pad 2 | x <- S.toList p | | y <= S.V
& toList p]
where
p = npower n
s = nset n

key a b ¢ d = vcat

[cell (Just D) # pad
, cell (Just A) # pad
, cell (Just B) # pad
, cell (Just C) # pad
| # scale 8

o T o QA

txt = alignedText 0 0.5

mainl :: Z -> 10 ()

mainl n = defaultMain $
let a = txt ”$ x \\cap y = \\emptyset \\wedge x \\not\\subseteq y \\wedge v
& x \\not\\supseteq y $”
b = txt ”$ x \\cap y \\neq \\emptyset \\wedge x \\not\\subseteq y \\wedge v

& x \\not\\supseteq y $”
txt 7% x \\cap y \\neq \\emptyset \\wedge \\left (x \\subset y \\vee xv
& \\supset y \\right) §”
d=1txt 78§ x =y §”
m=2"(n- 1) * (2’n - 1) + 1
count = txt § ”$ ” 4+ show m ++ 7 §”
oeis = alignedText 0 0 ”\ OEIS / A134169”
in bg white . pad 1.1 . centerXY $
alignBR (alignBL (diagram n # centerXY)
‘atop
alignBL (key a b ¢ d # centerXY)
alignTL ((strutY 1.1 ||| count) # bold # scale 96))
‘atop
alignBR (rotate (90 @Q deg) (oeis # bold # scale 8))

o
I

main :: IO ()

main = mainl 6

2 2018/A005905.hs

—— oeis—diagrams —- unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen

10

15

20

25

30

35

40

45

50

55

oeis-diagrams

2018/A005905.hs

License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

https://oeis.org/A005905
Number of points on surface of truncated tetrahedron:
a(0)=1.

a(4) =
-— a(12)

226
2018

14n"2 + 2 for n>0,

{-# LANGUAGE FlexibleContexts #-}

{-# LANGUAGE TypeFamilies #-}

import Diagrams.Prelude

import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

triUp, triDown, hex :: [(Int, Int)]
triUp =1 (0,0), (2,0), (1,1)]
triDown = [(0,0), (1,1), (-1,1)]
hex =1 (0,0), (2,0), (3,1), (2,2), (0,2), (-1,1)]
net :: [((Int, Int), [(Int, Int)])]
net =

[((0,0), hex)

, ((3,1), hex)

, ((6,0), hex)

, ((9,1), hex)

, ((0,2), triUp)

, ((4,0), triDown)

., ((6,2), triUp)

, ((10,0), triDown)

]
tabs :: [((Int, Int), (Int, Int))]
tabs =

[(C 0,0), (2,0))

o (C3,1), (4,0))

, (C5,1), (6,0))

, ((8,0), (9,1))

; ((10,0), (11,1))

;o ((12,2), (11,3))

;o (C9,3), (8,2))

» (C7,3), (6,2))

o (C5,3), (3,3))

o (C2,2), (1,3))

) ((0,2)7 (_1’1))

Int) —> Point V2 Double
p2 (fromIntegral i, fromIntegral j % sqrt 3)

point (Int,
point (i, j) =

tabVertices Point V2 Double —> Point V2 Double —> [Point V2 Double]
tabVertices pl p2 = [pl,p4,p3,p2]
where
u = scale (1/6) (p2 .-. pl)

p3 = translate (rotate (-2/6 @@ turn) u) p2
p4 = translate (rotate (-1/6 @Q turn) u) pl

outline Path V2 Double

60

65

70

75

80

85

90

95

100

105

110

115

oeis-diagrams

2018/A005905.hs

outline

= fromVertices $ concat [[point a, point b] | (a, b) <- tabs |

drawTab :: Point V2 Double -> Point V2 Double —> Diagram B
drawTab pl p2

= fromVertices (tabVertices pl p2)

mapLoc closeTrail

strokeLocTrail

lw thin

lc black

fc (blend 0.5 white grey)

drawShape :: (Int, Int) -> [(Int, Int)] —> Diagram B
drawShape p s

= fromVertices (map point s)

closeTrail

(‘at‘ point p)

strokeLocTrail

1w thin

lc black

fc (blend 0.5 white (if length s > 3 then blue else red))

drawTabs :: Diagram B
drawTabs
= mconcat [drawTab (point a) (point b) | (a, b) <- tabs]

drawNet :: Diagram B
drawNet
= mconcat [drawShape p s | (p, s) <- net]

drawPattern :: Int -> Diagram B
drawPattern n
= mconcat
[(circle 0.25 ‘at‘ point (i + (j ‘mod‘ 2), j))
translateX 0.25
strokeLocTrail

lc black

fc (blend 0.5 black red)

| i <~ [-n,-n + 2 .. 12 % n]
, J <= 10 .. 3 xn]

scale (1 / fromIntegral (n - 1))
clipped outline

diagram :: Int -> Diagram B
diagram n
= mconcat [drawPattern n, drawNet, drawTabs]

lineCap LineCapRound
lineJoin LineJoinRound
centerXY

padY (750/433)

pad 1.1

bg white

main :: I0 ()
main = defaultMain (diagram 4)

10

15

20

25

30

35

40

45

50

55

oeis-diagrams

2018/A056283.hs

3 2018/A056283.hs

—— oeis—diagrams —— unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen

—— License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

—— https://oeis.org/A056283

—— Number of n-bead necklaces with exactly three different colored beads.

|
|
o
—
W~
N
|

= 30
—— a(8) = 2018

{-# LANGUAGE FlexibleContexts #-}

{-# LANGUAGE TypeFamilies #-}

import Diagrams.Prelude hiding (size, zoom)

import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

import Control.Monad (replicateM)
import Data. List (inits, nub, sort, tails)
import System.Random (newStdGen, randoms)

rotations :: [a] —> [[a]]
rotations xs = zipWith (++) (tails xs) (inits xs)

canonical :: Ord a => [a] -> [a]
canonical xs = minimum (rotations xs)
isCanonical :: Ord a => [a] —> Bool
isCanonical xs = xs = canonical xs
isFull :: Eq a = Int —> [a] —> Bool

isFull k xs = length (nub xs) = k

sequences :: Int —> Int -> [[Int]]
sequences k n = replicateM n [1..k]
necklaces :: Int —> Int -> [[Int]]

necklaces k = filter (\xs —> isCanonical xs && isFull k xs)

a056283 :: [Int]
a056283 = map (length . necklaces 3) [1..]

chunk :: Int —> [a] —> [[a]]
chunk _ [] = []
chunk n zs = let (xs, ys) = splitAt n zs in xs : chunk n ys

colours = cycle . map (blend 0.5 black) $ [red, yellow, blue]

bead n m p
= (circle r ‘at‘ p)
strokeLocTrail
translateX r
lc black
fc (colours !! m)
where
r :: Double
r =2 / fromIntegral n

sequences k

60

65

70

75

80

85

90

10

15

oeis-diagrams 2018/A070211.hs

necklace n xs =
zipWith (bead n) xs ps # mconcat ‘atop®
unitCircle # lc black ‘atop*
strutX size ‘atop
strutY (size % sqrt 3 / 2)
where
ps = polygon (PolygonOpts (PolyRegular n 1) OrientH origin)

size = 3.5
zoom f{ d = withEnvelope d (scale f d)

diagram :: [Double] —> Diagram B
diagram g
= bg white

zoom 1.2
padX (4 / 3)
padY (3 / 2)
centerXY
vcat
zipWith translateX (cycle [0, size / 2])
map (hcat . map (necklace n))

chunk 6
(\xs —> zipWith (\r ys -> cycle (rotations ys) !! floor (fromIntegral n * r)v
&) (drop (length xs) g) xs)
. map snd . sort . zip g
$ necklaces k n
where
k=3
n=>35

main :: IO ()

main = do
g <- newStdGen
print g
defaultMain . diagram . randoms $ g
—-— mapM_ print . zip [0..] . takeWhile (<= 2018) $ a056283

4 2018/A070211.hs

—— oeis—-diagrams —-— unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen
—— License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

—— https://oeis.org/A070211
—— Number of compositions (ordered partitions) of n that are concave sequences.
—— Here, a finite sequence is concave if each term (other than the first or

-— last) is at least the average of the two adjacent terms. — Eric M. Schmidt,
—— Sep 29 2013
— a(8) = 24

— a(35) = 2018

{-# LANGUAGE FlexibleContexts #-}
import Diagrams.Prelude hiding (zoom)
import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

20

25

30

35

40

45

50

55

60

65

70

oeis-diagrams 2018/A070211.hs

import Data.List (sort, transpose)
import System.Random (newStdGen, randoms)

compositions :: Int -> [[Int]]
compositions 0 = [[]]
compositions n =

[¢

| m <- [1 .. n]

, ms <- compositions_memo !! (n - m)
, let ¢ =m : ms

, concave c

]

compositions_.memo :: [[[Int]]]
compositions.memo = map compositions [0..]
concave :: [Int] -> Bool

concave [] = True

concave [_] = True

concave [_,_] = True

concave (a:bs@Q(b:c:_)) =2 % b >= a + ¢
sequences :: Int —> [[Int]]

sequences n = compositions_.memo !! n
a070211 :: [Int]

a070211 = map length compositions_memo
chunk :: Int -> [a] -> [[a]]

chunk _ [] = []

chunk n zs = let (xs, ys) = splitAt n zs in xs : chunk n ys
baseColours = [grey, red, blue, yellow]

lightColours = map (blend 0.5 white) baseColours
darkColours = map (blend 0.5 black) baseColours
colours = drop 7 . cycle . concat . transpose $ [lightColours, darkColours]

zoom f{ d = withEnvelope d (scale f d)

bar s m
= (rect 0.75 (fromIntegral m :: Double) ‘atop‘ strutX 1)
scaleX s
lc black
fc (colours !! m)

barchart n xs
= map (bar (fromIntegral n / fromIntegral (length xs))) xs
hcat
centerXY
‘atop ¢ strutX (fromlIntegral n)
‘atop ¢ strutY (fromIntegral n)

diagram :: [Double] -> Diagram B
diagram g
= bg white
zoom 1.2

75

80

85

10

15

20

25

30

35

oeis-diagrams 2018/A118890.hs

padX (4 / 3)
padY (3 / 2)
centerXY
. vcat
. map (hcat . map (pad 1.2 . barchart n))
chunk 6
. map snd . sort . zip g
$ sequences n
where
n =38

main :: I0 ()
main = do
g <— newStdGen
print g
defaultMain . diagram . randoms $ g

5 2018/A118890.hs

-— oeis -diagrams —-- unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen
—-— License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

—— https://oeis.org/A118890
—— Triangle read by rows: T(n,k) is the number of binary sequences of length n
—— containing k subsequences 0110 (n,k>=0).

— a(25) =T) = 142
—— a(38) = T(14,2) = 2018

{-# LANGUAGE FlexibleContexts #-}
import Diagrams.Prelude hiding (zoom)
import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

import Data.List (sort)
import System.Random (newStdGen, randoms)

binary :: Int —> [[Bool]]

binary 0 = [[]]

binary n = [b:bs | b <- [False, True], bs <- binary_memo !! (n - 1)]
binary_memo :: [[[Bool]]]

binary_memo = map binary [0..]

count0110 :: [Bool] —> Int

count0110 (False:True:True:rest@(False:_)) = 1 4+ count0110 rest
count0110 (-:rest) = count0110 rest

count0110 - =0

row :: Int -> Int —> [[Bool]]
row k = filter ((k ==) . count0110) . (binary_-memo !!)

all18890_t :: Int —> Int -> Int
al18890_t k = length . row k

al18890_nk :: [((Int, Int), Int)]
al18890_nk = concat [takeWhile ((/= 0) . snd) [((n, k), all8890_-t k n) | k <= »

10

40

45

50

55

60

65

70

75

80

85

oeis-diagrams

2018/A121551.hs

G [0..]] | n<=[0..]]

al18890 :: [Int]
all8890 = map snd all8890_nk

chunking :: [Int] -> [a] —> [[a]]
chunking - [] = []
chunking (n:ns) zs = let (xs, ys) = splitAt n zs in xs

colourize :: [Bool] -> [Int]
colourize (False:True:True:False:True: True: False:rest) =
& (const 0) (colourize rest)

chunking ns ys

[1,1,1,3,2,2,2] ++ map v

colourize (False:True:True:False:rest) = [1,1,1,1] +4+ map (\x —> if x = 0 then v
G x else 1 + x) (colourize rest)

colourize (-:rest) = 0 : colourize rest
colours = [grey, red, blue, yellow]
colour False = (cycle (map (blend 0.5 white) colours) !!)
colour True = (cycle (map (blend 0.5 black) colours) !!)
bit b ¢

= circle (1 :: Double)

centerXY

padX 1.2

1w thin

lc black

fc (colour b c¢)
bits bs = hcat $ zipWith bit bs (colourize bs)

diagram :: [Double] —> Diagram B
diagram g
= bg white
. padX (780 / 750)
pad 1.2
rotate (1/4 @@ turn)
centerXY
cat’ unitX (with & sep .7 sqrt 3)
. zipWith translateY (cycle [0, 2])
. map (cat’ unitY (with & sep .7 2) . map bits)
chunking [36,35,36,35]
. map snd . sort . zip g
$ row k n
where
k =2
n =11

main :: IO ()
main = do
g <- newStdGen
print g
defaultMain . diagram . randoms $ g

6 2018/A121551.hs

—— oeis—diagrams —- unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen

11

10

15

20

25

30

35

40

45

50

55

oeis-diagrams 2018/A121551.hs

—— License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

—— https://oeis.org/A121551
—— Number of parts in all the compositions of n into Fibonacci numbers.

-— a(8) = 457 (number of composition is 94)
—— a(10) = 2018

{-# LANGUAGE FlexibleContexts #-}

{-# LANGUAGE TypeFamilies #-}

import Diagrams. Prelude

import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

import Data. List (sort, transpose)
import Data.Maybe (fromJust)
import System.Random (newStdGen, randoms)

fibs :: [Int]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

compositions :: Int —> [[Int]]
compositions 0 = [[]]
compositions n =

[m : ms

| m <- takeWhile (<= n) (drop 2 fibs)

, ms <- compositions_memo !! (n - m)

]
compositions.memo :: [[[Int]]]
compositions_.memo = map compositions [0..]
al21551 :: [Int]
al21551 = map (length . concat) compositions_.memo
chunking :: [Int] —> [a] —> [[a]]
chunking _ [] = []
chunking (n:ns) zs = let (xs, ys) = splitAt n zs in xs : chunking ns ys
baseColours = [grey, red, blue, yellow]

lightColours = map (blend 0.5 white) baseColours

darkColours = map (blend 0.5 black) baseColours

colours = [blend 0.5 white grey, blend 0.5 black red, blend 0.5 white blue, v
& blend 0.5 black blue, blend 0.5 white red]

colour n = fromJust . lookup n . zip (drop 2 fibs) $ colours
bar s n
= rect (s * fromIntegral n) 1
lc black
fc (colour n)
bars ns = centerXY . cat’ unitX (with & sep .7 d) . map (bar s) $ ns
where
d =0.5

n = sum ns
m = length ns
s = fromIntegral n / (fromIntegral (m — 1) % d + fromIntegral n)

12

60

65

70

75

10

15

20

25

30

oeis-diagrams

2018/A124255.hs

diagram :: [Double]
diagram g
= bg white
padX (779 / 750)
pad 1.2
centerXY

—> Diagram B

cat’ unitX (with & sep .7 sqrt 3)
zipWith translateY (4 : cycle [2, 0])

map (cat’ unitY

(with & sep .~ 2) . map bars)

chunking [15, 16, 16, 16, 16, 15]

map snd . sort

zip g

$ compositions_memo !! 8

main :: IO ()
main = do
g <- newStdGen
print g

defaultMain . diagram . randoms $ g
—-— mapM. print . zip [0..] . takeWhile (<= 2018) $ al21551

7 2018/A124255.hs

—— oeis —diagrams —-—

unofficial diagrams of OEIS sequences

—— Copyright (C) 2016-2017 Claude Heiland-Allen
—-— License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

—— https://oeis.org/A124255
—— Forest—and-trees problem: square of distance to most distant visible tree.

-— a(8) = 61 (most distant tree at (5, 6))

|

|

o
—
~
ot
=

\

= 2018

{-# LANGUAGE FlexibleContexts #-}
import Diagrams.Prelude
import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

import Data.Maybe (catMaybes)

n Double
n=32_8

resolution :: Int
resolution = 4096

treesl :: Diagram B
treesl = mconcat
[(circle (1 / n)
| i <= [-n .. n]
, j <= [-n .. n]
Ci/=0 0] g /=
]
trees2 :: Diagram B
trees2 = mconcat

[(circle (1 / n)
strokeLocTrail

‘at‘ p2 (i + 1 / n, j)) # strokeLocTrail

fatt p2 (1 + 1/, j))

13

35

40

45

50

55

60

65

70

75

10

oeis-diagrams 2018/A133736.hs

1w thin
if visible (p2(i, j))

then lc black . fc (blend 0.5 black red)

else lc (blend 0.5 black grey) . fc (blend 0.5 white grey)
| i <= [-n .. n]
, J <= [-n .. n]
],1/20 i /=20

visible p = any ((< 0.5) . distance p) boundary

boundary = catMaybes
[rayTraceV origin (angleV $§ t @@ turn) treesl

| i <- [0 .. resolution - 1]
, let t = fromIntegral i / fromIntegral resolution
| # map (‘translate ¢ origin)
visibility :: Diagram B
visibility
= boundary

fromVertices

mapLoc closeTrail

strokeLocTrail

lw veryThin

lc black

fc (blend 0.5 white blue)

observer
= circle (1 /n)
lw thin
lc black
fc (blend 0.5 black blue)

diagram :: Diagram B
diagram
= bg white
pad 1.2
padX (4 / 3)
$ observer ‘atop‘ trees2 ‘atop‘ visibility

main :: 10 ()
main = defaultMain diagram

8 2018/A133736.hs

—— oeis—diagrams —-— unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen
—— License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

-— https://oeis.org/A133736
—— Number of graphs on n unlabeled nodes that have an Eulerian cycle,
—— cycle that goes through every edge in the graph exactly once.

-— a(6) = 15
—— a(9) = 2018

{-# LANGUAGE FlexibleContexts #-}

14

i

.e.

)

a

15

20

25

30

35

40

45

50

55

60

65

oeis-diagrams 2018/A133736.hs

{-# LANGUAGE TypeFamilies #-}
import Diagrams. Prelude
import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

import Data.List (sort)
import System.Random (newStdGen, randoms)

chunk :: Int —> [a] —> [[a]]
chunk _ [] = []
chunk n zs = let (xs, ys) = splitAt n zs in xs : chunk n ys

cyclic ps = (ps, zip ps (drop 1 (cycle ps)))
bicyclic ps = zip ps (drop 2 (cycle ps))

graphs =
[case [origin] of ps —> (ps,[])
, cyclic $ triangle (sx*2)
, cyclic $§ square (s*2)
, cyclic $§ pentagon 2
, case origin : square (s*2) of

ps@[o,a,b,c,d] —=> (ps, [(0 a),(o,b),(o0,c),(o,d),(a,b), (c,d)])
, case map p2 [(0,s),(0,-s),(-s,0) ,(sqrt 6 / 2,0), (sqrt 6, 0)] of
ps@[u,d,l ,mr] —> (ps, [(th) (w,m) , (u, 1), (u,d) ,(d,1) ,(d,m) (d,r)])
, case cyclic $ pentagon 2 of (ps, es) —> (ps, es ++ blcycllc ps)

, cyclic $ hexagon 2

, case square (s*2) 4++ [origin, p2(sx2,0)] of
ps@la,b,c,d,o,r] => (ps, [(c,d),(a,r),(b,r),(0,a),(0,b),(0,¢c),(0,d)])
, case square (s*2) 4++ [origin, p2(sx2 0)} of
ps@Q[a,b,c,d,o,r] —> (ps, [(a,b),(b,c),(c,d),(d,a),(a,r),(b,r),(0,a),(o,b)¥

S 1)
, case map p2 [(0,s),(0,-s),(-1.5%s,0),(-0.5%s,0) ,(0.5%s,0) ,(1.5%xs,0)] of
ps@[u,l,a,b,c,d] -=> (ps, map ((,) u) [a,b,c,d] ++ map ((,) 1) [a,b,c,d])
, case cyclic $ hexagon 2 of
(p5@[a,b,c,d,e,f], es) -> (ps, es ++ [(a,c),(c,e),(e,a)])
, case hexagon 2 of
ps@Q[a,r,b,c,1,d] -=> (ps, [(a,b),(b,c),(c,d),(d,a),(a,c),(b,d),(a,r),(b,r)¥
C(en 1) (d, 1))
, case cyclic $ hexagon 2 of
(ps@[a,b,c,d,e,f], es) —> (ps, es ++ bicyclic (drop 1 ps))
, case cyclic $ hexagon 2 of (ps, es) —> (ps, es ++ bicyclic ps)
]
where
s = sqrt 2

node es p

= (circle r ‘at
translateX r
strokeLocTrail
lc black
fc (blend 0.5 white ([yellow, blue, red] !! (multiplicity es p ‘div‘ 2)))
where

r = 0.5

¢ ¢

p)

multiplicity es p = length . filter (p ==) $ map fst es 4++ map snd es

edge (p, q) = p ~7 q # lc black

15

70

75

80

85

90

10

15

20

25

30

oeis-diagrams

graph
graph (

= (mconcat (map (node es) ps)

([P2 Double], [(P2 Double, P2 Double)]) —> Diagram B

ps, es)

centerXY ‘atop‘ strutX 6 ‘atop‘ strutY 6

diagram
diagram

= bg
pad

[Double] —> Diagram B
g
white
1.15

padY (750/600)
centerXY
vcat
. map hcat
. chunk 5
. map graph
. map snd . sort . zip g
$ graphs

main

main =
g <=
print
defau

10 ()
do
newStdGen

g
ItMain . diagram . randoms $ g

9 2018/A149037.hs

—— oeis

—diagrams —-— unofficial diagrams of OEIS sequences

—— Copyright (C) 2016-2017 Claude Heiland-Allen

—— Lice

—— http

—— Number of walks within N"3 (the first octant of Z"3)
—— consisting of n steps taken from {(-1,

-,

nse CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

s://oeis.org/A149037

-1, 1), (1, 0, -1)}.

= 35
2018

{-# LANGUAGE FlexibleContexts #-}

import
import

Diagrams. Prelude hiding (project, translation)
Diagrams . Backend .SVG. CmdLine (B, defaultMain)

import Control.Monad (guard)
import Data. List (sortOn, transpose)
import System.Random (newStdGen, randoms)
steps [V3 Int]
steps = [v (-1) (-1) 0, v (1) 01, vO 11, v 1l (-1)1, v 10 (-1)]
where
v = mkR3
walk V3 Int -> [V3 Int]
walk p = do

step <- steps

p <=
guard
guard

16

pure $ p "+ step
(view _x p >= 0)
(view _y p >= 0)

2018/A149037.hs

‘atop ¢ mconcat (map edge es))

starting at
_11 O)’ (_17 07 1),

(0,0,0) and

35

40

45

50

55

60

65

70

75

80

85

oeis-diagrams

2018/A149037.hs

guard (view _z p >= 0)
pure p

extend :: [V3 Int] —> [[V3 Int]]
extend ps@(p:_) = do

q <- walk p

pure (q:ps)

initial :: [[V3 Int]]

initial = [[mkR3 0 0 0]]

walks :: [[[V3 Int]]]

walks = iterate (concatMap extend) initial

grid :: [V3 Int]

grid = [mkR3 x y z | x <- [0 .. 3], y <= [0 3], z <= [0 .. 3]]
chunk :: Int —> [a] —> [[a]]

chunk _ [] = []

chunk n zs = let (xs, ys) = splitAt n zs in xs : chunk n ys

project r p = (z - 12, p2(u, v))
where
x fromIntegral $§ view _x p
y = fromIntegral $§ view _y p
z = fromIntegral $§ view _z p
q = [X7 Y, 2, 1]
[a,b,c,d] = transformation r ‘mv
[u,v,w] = map (/d) [a,b,c]

transformation :: Bool —> [[Double]]
transformation r
= perspective ‘mm’
translation 0 0 (-10) ‘mm'

rotationX (-0.2) ‘mm‘

rotationY (if r then 1 4+ 0.1 else 1 - 0.1) ‘mm'

translation (-2) (-2) (-2)

perspective :: [[Double]]
perspective

=] [1/ (ratio * tan_half_angle), 0, 0, 0]

, [0, 1 / tan_half_angle, 0, 0]
, [0, 0, —=(far + near) / (far - near), -2 % (far * near) / (far - near)]
, [0, 0, -1, 0]
]
where
tan_half_angle = tan (angle / 2)
near = 0.1
far = 20
angle = pi / 8
ratio =1
rotationX :: Double —> [[Double]]
rotationX t
=[[1,0,0,0], [0,¢c,s,0], [0, -s,¢c, 0], [0,0,0,1]
where
c = cos ¢t

17

90

95

100

105

110

115

120

125

130

135

140

oeis-diagrams 2018/A149037.hs

s = sin ¢t

rotationY :: Double —> [[Double]]
rotationY t
=[] J]e¢, O0,s,0], [0,1,0,0],[=-s, 0,¢c, O], [0, 0,0,1]]
where
c = cos t
s = sin t

translation :: Double —> Double —> Double —> [[Double]]
translation x z

=[1

’ I I

y
1, 0, 0
0, 1, 0,
0, 0, 1
0, 0, 0

I

k]

= N <X

]
]
]
) 7 }

vv :: [Double] —> [Double] -> Double
vv a b = sum $ zipWith (x) a b

mv :: [[Double]] -> [Double] -> [Double]
mvab=map (‘vv' b) a

mm :: [[Double]] -> [[Double]] —> [[Double]]
mmab=/[[u ‘vw' v | v <- transpose b | | u <- a |
path :: [V3 Int] -> Diagram B
path w

= pad 1.2

withEnvelope’ (centerXY § fromVertices
(map (snd . project False) grid ++ map (snd . project True) grid))
centerXY
$ fromVertices (map (snd . project False) w) # lc (blend 0.5 black red) ‘atop*
fromVertices (map (snd . project True) w) # lc (blend 0.5 black blue)

withEnvelope’ :: Diagram B -> Diagram B -> Diagram B
withEnvelope’ = withEnvelope
diagram :: [Double] -> Diagram B
diagram g
= bg white
pad 1.1
padY (750/663)
centerXY
. vcat
. map (hcat . map path)
chunk 7

. map snd . sortOn fst . zip g
$ walks !! 4

main :: IO ()
main = do
g <- newStdGen
print g
defaultMain . diagram . randoms $ g

18

10

15

20

25

30

35

40

45

50

55

oeis-diagrams 2018/A213497.hs

10 2018/A213497.hs

—— oeis—diagrams —— unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen
—— License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

—— https://oeis.org/A213497
—— Number of (w,x,y) with all terms in {0,...,n} and w = min(|w—x|,|x-y]|) .

— a(5) = 40
—— a(40) = 2018

{-# LANGUAGE FlexibleContexts #-}
import Diagrams.Prelude
import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

import Data. List (sort)
import System.Random (newStdGen, randoms)

tuples :: Int -> [(Int, Int, Int)]
tuples n =

[(w, %, y)

| w<- [0 .. n]

, x <= [0 n|

, y <= [0 .. n]

, w=— min (abs (w - x)) (abs (x - y))

chunk :: Int -> [a] —> [[a]]
chunk _ [] = []
chunk n zs = let (xs, ys) = splitAt n zs in xs : chunk n ys

colours =
[1 grey
grey
blue
red
blue
red

o — —

where
d = blend 0.5 white
I = blend 0.5 black

draw :: Int —> (Int, Int, Int) -> Diagram B
draw n (w, x, y)
= (circle) # fc (colours !l w)

(r'w i
circle (r x) # fc (colours !! x) |||
circle (r y) # fc (colours !l y))
centerXY
atop (strutX (4 = r n + 6))
atop (strutY (2 = r n + 6))
rotate (1/7 @Q turn)
where

r t = 0.5 + fromIntegral ¢

FH I

diagram :: [Double] -> Diagram B

19

60

65

70

10

15

20

25

30

35

oeis-diagrams 2018/A229915.hs

diagram g
= bg white
pad 1.2
padX (777/750)
centerXY
vcat
map hcat
chunk 8
map (draw n)
. map snd . sort . zip g
$ tuples n
where
n=3:5

main :: I0 ()
main = do
g <— newStdGen
print g
defaultMain . diagram . randoms $ g

11 2018/A229915.hs

-— oeis —diagrams -- unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen
—- License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

—— https://oeis.org/A229915
—— Number of espalier polycubes of a given volume in dimension 3.

— a(7) = 34
—— a(20) = 2018

{-# LANGUAGE FlexibleContexts #-}
import Diagrams.Prelude hiding (cube)
import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

import Control.Monad (guard)

import Data.List (nub, sort, sortOn)
import Data.Tuple (swap)

import System.Random (newStdGen, randoms)

partitions :: Int —> [[Int]]
partitions 0 = [[]]
partitions n

=nub [sort $m : ms | m <~ [l..n], ms <— partitions_memo !! (n - m)]
partitions_memo :: [[[Int]]]
partitions_.memo = map partitions [0..]
espaliers n = do

a <- concat $ take (2 % n) partitions_memo
b <- concat $ take (2 % n) partitions_memo
guard (not (null a))

guard (not (null b))

guard (length a = length b)

e <- pure 3 combine (ferrers a) (ferrers b)
guard (length e — n)

20

40

45

50

55

60

65

70

75

80

85

90

oeis-diagrams 2018/A229915.hs

pure e
ferrers = concat . zipWith (\i j -> map ((,) i) [1..j]) [1..] . reverse

combine as bs
= nub $ sort [(i, j, k) | (i, j) <— as, (i’, k) <= bs, i =1’ |

2229915 = map (length . nub . map sort . espaliers) [0..]

chunking :: [Int] -> [a] —> [[a]]

chunking _ [] = []

chunking (n:ns) zs = let (xs, ys) = splitAt n zs in xs : chunking ns ys
withEnvelope’ :: Diagram B —-> Diagram B -> Diagram B

withEnvelope’ = withEnvelope

cube (i, j, k)
= translateX x
translateY y
$ rhombus grey [o,a,b,c] ‘atop*

rhombus red [o,c,d,e] ‘atop
rhombus blue [o,e,f, a]
where

x = fromIntegral (j - k) % sqrt 3 / 2
y = fromIntegral i - fromIntegral (j + k) * 0.5
[0,a,b,c,d,e,f] = origin : hexagon 1 # map (rotate (1.5 / 6 @Q turn))
rhombus ¢ xs
= fromVertices xs
mapLoc closeTrail
strokeLocTrail
lc black
fc (blend 0.5 white c¢)

draw
= centerXY
mconcat
map cube
sortOn (\(i, j, k) -=> (-1, -j, -k))

diagram :: [Double] —> Diagram B
diagram g
= bg white

pad 1.2
padY (750/739)
centerXY
lineCap LineCapRound
lineJoin LineJoinRound
vcat
map (centerXY . hcat)
chunking [7,7,6,7,7]

map (withEnvelope’ env . draw)
. map snd . sort . zip g
$ espaliers n
where
n=1="1
env = centerXY . mconcat . map draw . espaliers $ n

21

95

100

10

15

20

25

30

35

40

45

oeis-diagrams 2018/A240059.hs

main :: I0 ()

main = do
g <- newStdGen
print g
defaultMain . diagram . randoms $ g
—-— mapM. print . zip [0..] . takeWhile (<= 2018) $ a229915

12 2018/A240059.hs

—— oeis—diagrams —— unofficial diagrams of OEIS sequences
-— Copyright (C) 2016-2017 Claude Heiland-Allen
- License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

—— https://oeis.org/A240059
—— Number of partitions of n such that m(1) > m(3), where m = multiplicity .

) = 46
—— a(27) = 2018

{-# LANGUAGE FlexibleContexts #-}

{-# LANGUAGE TypeFamilies #-}

import Diagrams. Prelude

import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

import Data.List (nub, sort, zipWith4)
import System.Random (newStdGen, randoms)

partitions :: Int -> [[Int]]
partitions 0 = [[]]
partitions n

=nub [sort $m : ms | m <~ [l..n], ms <— partitions_memo !! (n - m) |
partitions-memo :: [[[Int]]]
partitions_.memo = map partitions [0..]
multiplicity :: Int —> [Int] -> Int

multiplicity k = length . filter (k ==)

a240059_ps :: [[[Int]]]
2240059 _ps
= map (filter (\xs —> multiplicity 1 xs > multiplicity 3 xs)) partitions_memo

2240059 = map length a240059_ps

chunking :: [Int] -> [a] —> [[a]]
chunking _ [] = []
chunking (n:ns) zs = let (xs, ys) = splitAt n zs in xs : chunking ns ys

colour’” b = blend 0.5 (if b then black else white)

colour 1 b = colour’ b red
colour 3 b = colour’ b blue
colour _ b = colour’ b grey
pieChart :: Int -> [Int] -> Diagram B

pieChart n xs

22

50

55

60

65

70

75

80

10

15

oeis-diagrams 2018/A267255.hs

= mconcat ws
centerXY
pad padding
where
ys = scanl (4+) 0 xs
ts = map (\y —> fromIntegral y / fromIntegral n) ys
ws = zipWith4d w ts (tail ts) xs (cycle [True, False])
w lo hi m b
= wedge 1 (rotate (lo @@ turn) xDir) ((hi - lo) @@ turn)
lc black
lineCap LineCapRound
lineJoin LineJoinRound
fc (colour m b)

padding = 1.2

diagram :: [Double] —> Diagram B
diagram g
= bg white
pad padding
padY (750/706)
centerXY
vcat
zipWith translateX ([padding, 0, padding, 0, padding, 2 * padding])
. map hcat
. chunking [7, 8, 8, 8, 8, 7]
. map (pieChart n)
. map snd . sort . zip g
$ a240059_ps !!' n
where
n = 12

main :: IO ()

main = do
g <- newStdGen
print g
defaultMain . diagram . randoms $ g
—-— mapM_ print . zip [0..] . takeWhile (<= 2018) $ a240059

13 2018/A267255.hs

—— oeis—-diagrams —-— unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen
—— License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

—— https://oeis.org/A267255

—— Decimal representation of the n-th iteration of the "Rule 111”7 elementary
—— cellular automaton starting with a single ON (black) cell.

-— a(b) = 2018

{-# LANGUAGE FlexibleContexts #-}

import Diagrams. Prelude

import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

import Control.Monad (replicateM)

23

20

25

30

35

40

45

50

55

60

oeis-diagrams 2018/A271996.hs

data Cell =0 | I

rule :: [Cell] —> [Cell]

rule (I:xs@Q(I:I:_)) =0 rule xs
rule (I:xs@Q(I:0:_.)) =1 : rule xs
rule (I:xs@(O:I:_.)) =1 : rule xs
rule (I:xs@(0:0:_.)) =0 : rule xs
rule (O:xs@(_:_:_)) =1 rule xs
rule _ = []

initial :: (Cell, [Cell])
initial = (O, [I])

step :: (Cell, [Cell]) —> (Cell, [Cell])
step (¢, xs) = (case ¢ of I => O ; O —> I, rule ([c,c] ++ xs ++ [c,c]))

history :: [[Cell]]
history = map snd . take 15 $ iterate step initial

cell :: Bool —> Cell —> Diagram B
cell b O = circle 1 # pad 1.2 # lc black # fc (colour b blue)
cell b I = circle 1 # pad 1.2 # lc black # fc (colour b red)

colour b = blend 0.5 (if b then black else white)

key :: [Cell] —> Diagram B
key xsQ[a,b,c]
= (centerX (cell False a ||| cell False b ||| cell False c)

centerX (cell True (head (rule xs))))
centerXY # padX 1.2

legend :: Diagram B
legend = centerXY . hcat . map key . replicateM 3 $§ [I,0]

diagram

= bg white
pad 1.2
padY (750/672)
centerXY
(legend ===)
(strutY 6 ===)
centerXY
vcat

. zipWith (\n —> centerX . hcat . map (cell (n = 5))) [0..]

$ history

main = defaultMain diagram

14 2018/A271996.hs

—— oeis-diagrams —- unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen
—— License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

—— https://oeis.org/A271996
—— The crystallogen sequence (a(n) = A018227(n)-4).

10

15

20

25

30

35

40

45

10

oeis-diagrams 35/A000292.hs

-—— a(7) =114
—— a(21) = 2018

{-# LANGUAGE FlexibleContexts #-}

{-# LANGUAGE TypeFamilies #-}

import Diagrams. Prelude

import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

shells = [2, 8, 8, 18, 18, 32, 32
isLast = map (const False) (drop 1 shells) ++ [True]

nucleus = circle 0.25 # lc black # fc (blend 0.5 black blue)

hole p = (circle 0.25 ‘at‘ p) # translateX 0.25 # strokeLocTrail # fc (blend 0.5¢

& white red)

electron p = (circle 0.125 ‘at‘ p) # translateX 0.125 # strokeLocTrail # fc (v
& blend 0.5 white blue)

shell :: Int -> Int -> Bool -> Diagram B
shell i n b
= (if odd i then rotate ((0.5 / fromlIntegral n) @Q turn) else id)

$ mconcat (zipWith (8$) (if b then concat $ replicate 4 (hole : replicate ((n —-»

& 4) ‘div‘ 4) electron) else replicate n electron)
(polygon (PolygonOpts (PolyRegular n r) NoOrient origin))) # lc black
‘atop ¢ circle r # lc black
where
r =4 % (fromIntegral (i + 2) / fromIntegral (length shells + 1))

diagram :: Diagram B
diagram
= bg white
. pad 1.2
padX (1000/750)
rotate (1 / 3 @Q turn)
centerXY
atop nucleus
. mconcat
$ zipWith3 shell [0..] shells isLast

main = defaultMain diagram

15 35/A000292.hs

—— oeis-diagrams —— unofficial diagrams of OEIS sequences
—-— Copyright (C) 2016-2017 Claude Heiland-Allen
—— License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

-— https://oeis.org/A000292
—— The number of (n+42)-bit numbers which contain two runs of 1’s in their binary
—— expansion. — Vladimir Shevelev, Jul 30 2010

{-# LANGUAGE FlexibleContexts #-}

import Diagrams.Prelude hiding (parts, size)

import Diagrams.Backend.SVG.CmdLine (B, defaultMain)
import Diagrams.TwoD.Arc (arcT)

25

15

20

25

30

35

40

45

50

10

oeis-diagrams 69/A003269.hs

import Data.List (sort, transpose)
import Data.List.Split (chunksOf)

parts n =
[draw

[replicate b True

, replicate ¢ False

, replicate d True

, replicate e False

‘atop ¢ strutXY (size * 5)

| a <= [0]
, b <— 1 n-1- a]
, ¢ <-[1 n-1-a-b]
,d <=1 n-a->b-c]
, let e=n-a-b-c¢c -d
]

size :: Double

size = 3

grid = vcat . map hcat

cell True = circle 1 # fcA (red ‘withOpacity‘ 0.5) # lc black ‘atop‘ strutXY v

& size

cell False = circle 1 # fc white # lc black ‘atop‘ strutXY size

draw = centerXY . rotate (1/5 @Q turn) . centerXY . vcat . map (centerXY . (‘v
& atop ¢ strutXY size) . hcat . map cell)

strutXY x = strutX x ‘atop‘ strutY x

diagram m n
= lw thick
bg white
centerXY
grid
. chunksOf m
$ parts (n + 2)

main = defaultMain (diagram 5 5)

16 69/A003269.hs

—— oeis-diagrams —- unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen
—— License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

-— https://oeis.org/A003269

-— a(n+1) is the number of compositions of n into parts 1 and 4. — Joerg Arndt,
—— Jun 25 2011

{-# LANGUAGE TypeFamilies #-}

import Diagrams.Prelude hiding (parts)
import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

26

15

20

25

30

35

10

15

20

25

oeis-diagrams 70/A000129

.hs

import Data.List (sortBy)
import Data.Monoid ((<>))
import Data.Ord (comparing)
parts = [1, 4]

compositions’ total

| total < 0 = []
| total = 0 = [[]]
| otherwise = [part : rest | part <- parts, rest <- compositions (total - v
& part)]
compositions total = filter ((total ==) . sum) (compositions’ total)
diagraml :: [Int] -> Diagram B
diagraml is = mconcat [strokeLocTrail $ circle (0.125) ‘at‘ v | v <— vs] # lw v
& thin # fc black ‘atop‘ head vs 77 last vs ‘atop‘ strutY (1/3)
where

vs = map (\x —-> p2 (fromIntegral x, 0)) (scanl (+) 0 is)

diagram :: Int -> Diagram B
diagram = bg white . frame 2 . centerXY . vcat . map diagraml . compositions

main = defaultMain (diagram 15)

17 70/A000129.hs

-— oeis —diagrams —-- unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen
—— License CC-BY-NC <https://creativecommons.org/licenses /by-nc/3.0/>

—— https://oeis.org/A000129

—— a(n) is the number of compositions (ordered partitions) of n-1 into two sorts
-— of 1’s and one sort of 2’s. Example: the a(3)=5 compositions of 3-1=2 are
— 141, 14+1’, 1’41, 1°+1’, and 2. - Bob Selcoe, Jun 21 2013

{-# LANGUAGE FlexibleContexts #-}
import Diagrams. Prelude
import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

import Control.Monad (replicateM)
import Data. List (sort, transpose)
import Data.List.Split (chunksOf)

u, d, h, z :: (Int, Int)
u= (1, 1)
d= (1, -1)
h = (2, 0)
z = (0, 0)

add (a, b) (¢, d) = (a + ¢, b+ d)

v :: (Int, Int) —> V2 Double
v (a, b) = V2 (fromIntegral a) (fromIntegral b)

vs = map v . scanl add z

27

30

35

40

45

50

55

60

10

15

20

oeis-diagrams 70/A000332.hs

1 = fst . foldr add z

paths n =
[a
| m <- [0..n]
, q <- replicateM m [u,d,h]
, 1 gq=n

]

draw n q
= frame 0.5
(‘atop ¢ centerXY (strutY (fromlIntegral n)))
. centerXY
$ mconcat
[circle 0.25
fc white
translate pq
1w thin
| pa <- vs q
] ‘atop‘ strokeT (trailFromOffsets (map v q))

grid = vcat . map hcat

diagram n m

= bg white
centerXY
grid
transpose
chunksOf m
map (draw n)

. sort

$ paths n

main = defaultMain (diagram 5 10)

18 70/A000332.hs

-— oeis-diagrams —-- unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen
—— License CC-BY-NC <https://creativecommons.org/licenses /by-nc/3.0/>

—— https://oeis.org/A000332

—— The number of equilateral triangles with vertices in an equilateral

—— triangular array of points with n rows (offset 1), with any orientation.
—— — Ignacio Larrosa Canestro, Apr 09 2002.

{-# LANGUAGE FlexibleContexts #-}
import Diagrams. Prelude
import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

import Data.List (sort, sortOn, nub, transpose)
import Data.List.Split (chunksOf)

third :: (Int, Int) -> (Int, Int) —> (Int, Int)
third (p, q) (p’, a’) =

let (s, t) = (p’ - p, 4’ - q)

in (p-t, q+4+s+t)

28

25

30

35

40

45

50

55

60

65

70

75

oeis-diagrams

70/A000332.hs

inTriangle :: Int —> (Int, Int) —> Bool
inTriangle n (p, q) = 0<=p&& 0<=q&& p + qg<n

sizeSquared [(Int, Int)] -> Int
sizeSquared [(p, q), (p’, q’), -] =

let (s, t) = (p’" - p, 4’ - q)

in s *s 4+ s *xt 4+t xt
triangles :: Int —> [[(Int, Int)]]
triangles n = sortOn sizeSquared $

nub

[sort [(a, b), (¢, d), (e, f)]

| a <- [0..n]

, b <= [0..n]

, inTriangle n (a, b)

, ¢ <= [0..n]

, d <= [0..n]

, inTriangle n (¢, d)

) (3‘7 b) /: (c, d)

, (e, f) <= [third (a, b) (c, d)

, third (¢, d) (a, b)
]

, inTriangle n (e, f)

]
t2 :: (Int, Int) -> V2 Double
t2 (p, q)

= V2

(fromIntegral p + fromIntegral q / 2)

(sqrt 3 % fromlIntegral q / 2)

t2’ =P . t2

draw n t@[ab,cd,e
= frame 0.75

scale 1.25

rotate (15 @Q

mconcat

circle 0.25

fc (if (p, a)

translate (t2

Iw thin

p <- [0..n]

q <- [0..n]

, inTriangle n

v — 3 FkH e

f]

deg)

‘elem‘ t then grey else white)

(p, q))

(p, a)

] ‘atop‘ mconcat

t27 ab " t2°
, 627 od T 120
, 627 ef "7 20

grid = vcat . map
diagram n m

= bg white
grid

cd
ef
ab

hcat

29

80

10

15

20

25

30

35

40

45

oeis-diagrams 70/A000984.hs

chunksOf m
. map (draw n)
$ triangles n

main = defaultMain (diagram 6 7)

19 70/A000984.hs

—— oeis—diagrams —— unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen
—— License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

—— https://oeis.org/A000984

—— The number of direct routes from my home to Granny’s when Granny lives n
—— blocks south and n blocks east of my home in Grid City. To obtain a direct
—— route, from the 2n blocks, choose n blocks on which one travels south. For
—— example, a(2)=6 because there are 6 direct routes: SSEE, SESE, SEES, EESS,
—— ESES and ESSE. - Dennis P. Walsh, Oct 27 2006

{-# LANGUAGE FlexibleContexts #-}
import Diagrams. Prelude
import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

import Control.Monad (replicateM)
import Data. List.Split (chunksOf)

u, d, z :: (Int, Int)
u= (1, 0)
d = (0, 1)
z = (0, 0)

add (a, b) (¢, d) = (a + ¢, b +4d)

v :: (Int, Int) —> V2 Double
v (a, b) = V2 (fromIntegral a) (fromIntegral b)

vs = map v . scanl add z
I = foldr add =z

paths n =
[a
| q <- replicateM (2 * n) [u,d]
, 1 ¢ = (n, n)
]
draw n q

= frame 0.5
(‘atop ‘ centerXY (strutY (fromlIntegral n)))
centerXY
$ mconcat
[circle 0.25
fc white
translate pq
lw thin
| pa <= vs q
] ‘atop‘ strokeT (trailFromOffsets (map v q))

30

50

55

60

10

15

20

25

30

35

40

oeis-diagrams 70/A001405.hs

grid = vcat . map hcat

diagram n m
= bg white
centerXY
grid
chunksOf m
. map (draw n)
$ paths n

main = defaultMain (diagram 4 7)

20 70/A001405.hs

—— oeis—-diagrams —— unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen
—— License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

—— https://oeis.org/A001405
—— Number of meanders (walks starting at the origin and ending at any altitude

—— >= 0 that may touch but never go below the x-axis) with n steps from {-1,1}.

—— - David Nguyen, Dec 20 2016

{-# LANGUAGE FlexibleContexts #-}
import Diagrams. Prelude
import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

import Control.Monad (replicateM)
import Data. List (sort, transpose)
import Data. List.Split (chunksOf)

u, d, z :: (Int, Int)
u= (1, 1)
d = (1, -1)
z = (0, 0)

add (a, b) (¢, d) = (a + ¢, b+ d)
boundedBelow = not . any ((< 0) . snd) . scanl add z

paths n =
[a
| q <- replicateM n [u,d]
, boundedBelow q

]

v :: (Int, Int) —> V2 Double
v (a, b) = V2 (fromIntegral a) (fromIntegral D)

vs = map v . scanl add z

draw n q
= frame 0.5
(‘atop ‘ centerXY (strutY (fromIntegral n)))
centerXY
$ mconcat
[circle 0.25

31

45

50

55

60

10

15

20

25

30

35

oeis-diagrams 70/A002623.hs

fc white

translate pq

4 lw thin

| pa <- vs q

] ‘atop‘ strokeT (trailFromOffsets (map v q))

grid = vcat . map hcat

diagram n m

= bg white
centerXY
grid
transpose
chunksOf m
map (draw n)

. sort

$ paths n

main = defaultMain (diagram 8 10)

21 70/A002623.hs

-— oeis —diagrams -- unofficial diagrams of OEIS sequences
—— Copyright (C) 2016-2017 Claude Heiland-Allen
—- License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

—— https://oeis.org/A002623
—— Number of nondegenerate triangles that can be made from rods of length
-—1,2,3,4,...,n. — Alfred Bruckstein

{-# LANGUAGE FlexibleContexts #-}
import Diagrams.Prelude
import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

import Data.List (sort, sortOn, nub, transpose)
import Data. List.Split (chunksOf)

nondegenerate :: [Int] —-> Bool
nondegenerate [a,b,c] = a + b > ¢
corners :: [Int] —> [V2 Double]

corners [a’,b’,c’]
=[V20 0, V2 ¢ 0, V2 x y]
where

= fromlIntegral a’

= fromIntegral b’

= fromlIntegral ¢’

= (c"2 - a"24+b"2) / (2 % ¢)

= sqrt $§ b"2 - x"2

< K o oW

sizeSquared :: [Int] —> Double
sizeSquared [a’,b’,c’]
=s % (s —a) * (s —b) x (s - ¢)
where
a = fromIntegral a’
b = fromIntegral b’
¢ = fromlIntegral c’

32

oeis-diagrams 72/A002620.hs

s=(a+b+c) /2

triangles :: Int -> [([Int], [V2 Double])]
triangles n

= map (\t —> (t, corners t))

. sortOn sizeSquared $

[abc

| a <- [1..n]
, b <- [a..n]
, ¢ <= [b..n]
, let abc = [a,b,c]

, nondegenerate abc

edge k a b
= mconcat
[circle 0.25
fc white
translate p
lw thin
| p<— [lerp t a b
i <- [0..k]
let t = fromIntegral i / fromIntegral k

|
]’
] ‘atop*
(Pa ™" Pb)

draw n ([a,b,c], t@Q[ab,cd,ef])
= frame 0.5
(‘atop ¢ centerXY (strut (fromlIntegral n)))
centerXY
rotate (15 @Q deg)
mconcat

‘atop ¢ mconcat
edge ¢ ab cd
edge a cd ef
, edge b ef ab

]

$
[
]
[

grid = vcat . map hcat
diagram n m
= bg white
grid
chunksOf m

. map (draw n)
$ triangles n

main = defaultMain (diagram 8 7)

22 72/A002620.hs

—— number of multigraphs with loops on 2 nodes with 15 edges
—— https://oeis.org/A002620

graphs n =

33

10

15

20

25

30

35

40

oeis-diagrams 92/A000124.hs

[(a, b,)
| a <- [0..n]

, b <= [0..n]

, ¢ <= [0..n]
,a+ b+ c=—n

, a <= c¢

,a>0 [b>1 1] ¢>0
]
fx = 64
fy = 32

graph (u, v) (a, b, c¢)

= 7<g transform="translate(” ++ dist (fx * (b + 1 - (if ¢ < 8 then 8 - ¢ elsev
- 0) + (if odd (round c) then 0.5 else 0) + fromIntegral ((round ¢ - 8) ‘v
Godive 2))) ++ 7,7 4+ dist (fy x (¢ + 1)) + 7))’ >\n”
++ concat [topLoop (r + 1) | r <= [1 .. a]]
++ concat [betweenCurve x | x <- [-b+ 1, -b+3 .. b -1]]
++ concat [bottomLoop (r + 1) | r <= [1 .. ¢]]
++ nodes
+ 7</g>\n"
dist = coord
coord x = show (round (10 % x) :: Int)
r0 =1
y0 = 16
nodes = 7<circle ¢x="0" ¢cy="0" r="" 4+ dist 10 ++ 7’ fill="red’ />\n”
++ "<circle ¢x="0" cy="" 4+ coord y0 4++ ”’ r="" 44 dist r0 ++ 7’ fill="redv
G 7 />\n”
topLoop r = "<circle ¢x=’0" ¢cy="" 4++ coord (r + y0) ++ 7’ r="" ++ dist r ++ 7’ 7
& />\n”
bottomLoop r = "<circle c¢x=’0" cy="" 44 coord (-r) ++ 7’ r="" 4+ dist r ++ 7’ V
S />\n”
betweenCurve x = "<path d="M0,0 Q* 4++ coord (2 * x) ++ 7,” ++ coord (y0/2) ++ 7 v

& 0,7 4++ coord y0 ++ 7’ />\n”

main = putStrLn $

7<?xml version=\"1.0\" encoding=\"UTF-8\” standalone=\"yes\”?>\n" ++

? <IDOCTYPE svg PUBLIC \”-//W3C//DID SVG 1.1//EN\” \”http://www.w3.org/Graphicsy
& /SVG/1.1/DID/svgll.dtd\”>\n" ++

"<svg xmlns=\"http://www.w3.0rg/2000/svg\” viewBox=\"0 0 7 ++ dist (fx * 16) v
G 4+ 7 7 ++ dist (fy * 16) ++ "\">\n" ++

"<g fill=’none’ stroke='black’ stroke-width="1" transform=’translate(5120,0) v
& rotate(-45) translate(-5120,-2560)’>\n" ++

concat (zipWith graph [(u, v) | v <= [1..6], u <- [1..12]] (graphs 15)) ++

T /g><[svg >

23 92/A000124.hs

—— oeis-diagrams —- unofficial diagrams of OEIS sequences
—-— Copyright (C) 2016-2018 Claude Heiland-Allen
—— License CC-BY-NC <https://creativecommons.org/licenses/by-nc/3.0/>

—— https://oeis.org/A000124
—— a(n) is the maximal number of grandchildren of a binary vector of length

10

15

20

25

30

35

40

45

50

55

60

oeis-diagrams

92/A000124.hs

—-— n+2. E.g., a binary vector of length 6 can produce at most 11 different

—— vectors when 2 bits are deleted.

-— a(13) = 92

{-# LANGUAGE FlexibleContexts #-}
import Diagrams.Prelude hiding (size)
import Diagrams.Backend.SVG.CmdLine (B, defaultMain)

import Control.Monad (replicateM)

import Data. List (sortBy, groupBy, transpose)
import Data.List.Split (chunksOf)

import Data.Ord (comparing)

import Data.Set (Set, fromList, toList, size)
import System.Random (StdGen, newStdGen, randomRs)

deletions :: [a] —> [[a]]
deletions [x] = [[]]
deletions (x:xs) = map (x:) (deletions xs) ++ [xs]

{-
n :: Int
n = 13

candidates :: [String]
candidates = replicateM (n + 2) 7/\\”

equating :: Eq e = (a -> e) —> a —> a -> Bool
equating f a b=f a=f b

ancestor :: String

grandchildren :: [String]

(ancestor, grandchildren)
= fmap toList
head
head
groupBy (equating (size . snd))
. sortBy (flip $ comparing (size . snd))
5 [(c, s)
| ¢ <- candidates
, let s = fromList
concatMap deletions
toList
fromList
deletions

§ c
-

ancestor :: String
grandchildren :: [String]
ancestor = 7 /\\/\\/\\/\\/\\/AN/A\\/7
grandchildren
= toList
fromList
concatMap deletions
toList

35

65

70

75

80

85

90

95

100

105

110

115

120

oeis-diagrams

92/A000124.hs

fromList
deletions
$ ancestor

up, down :: V2 Double
up = r2 (1, 1)
down = r2 (1, -1)

wiggle :: String -> Diagram B
wiggle s
= atop (strutY 3)
centerXY

lineCap LineCapRound
lineJoin LineJoinRound
IwL 1
lc (colour . rampage $ s)
strokeP
fromOffsets
. map wig

$ s
wig :: Char —> V2 Double
wig '/’ = up
wig '\\’ = down

rampage :: String —> (Int, Int, Int)
rampage s =
(minimum $ scanl (+) 0 $ map ramp s
, maximum $ scanl (4+) 0 $ map ramp s
, sum (map ramp s)

)
ramp :: Char —> Int
ramp '/’ =1
ramp '\\’ = -1
colour :: (Int, Int, Int) —> Colour Double
colour (0, 1, 1) = black
colour (-1, 0, -1) = black
colour (0, 2, 1) = sRGB24 0xe7 0xd9 0x40 —-- yellow
colour (-2, 0, -1) = sRGB24 0x44 Oxde 0xd5 -- cyan
colour (-1, 1, 1) = sRGB24 0x40 0x45 Oxce —- blue
colour (-1, 1, -1) = sRGB24 0xbf 0x6d Oxe5 —-- magenta
colour (-2, 1, -1) = sRGB24 0x50 0xc3 0x36 —-- green
colour (0, 3, 3) = sRGB24 Oxcf 0x0c Ox4c —- red
colour s = error (show s)
shuffle :: StdGen —-> [a] -> [a]
shuffle g
= map snd
sortBy (comparing fst)
zip (randomRs (0, 1 :: Double) g)
diagram :: StdGen —> Diagram B
diagram g
= bg white
frame 4

36

125

130

10

15

20

25

30

35

40

oeis-diagrams

CC-BY-NC.md

centerXY
vsep (1 :: Double)
. map
(centerXY

s

main

hsep (2 :: Double)
. map wiggle

)
chunksOf 4
shuffle g
grandchildren

I0 ()

main = newStdGen >>= defaultMain . diagram

24

CC-BY-NC.md

Creative Commons Legal Code

Attribution —-NonCommercial 3.0 Unported

VVVVVYV

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN ”AS-IS” BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR
DAMAGES RESULTING FROM ITS USE.

«Licensex

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE (”CCPL” OR ”LICENSE”). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

*%1.

Definitions *x

xx” Adaptation”x* means a work based upon the Work, or upon the Work
and other pre—existing works, such as a translation , adaptation,
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may
be recast , transformed, or adapted including in any form
recognizably derived from the original , except that a work that
constitutes a Collection will not be considered an Adaptation for
the purpose of this License. For the avoidance of doubt, where the
Work is a musical work, performance or phonogram, the
synchronization of the Work in timed-relation with a moving

image (”synching”) will be considered an Adaptation for the purpose
of this License.

37

45

50

55

60

65

70

75

80

85

90

95

oeis-diagrams CC-BY-NC.md

38

xx” Collection”** means a collection of literary or artistic works,
such as encyclopedias and anthologies, or performances, phonograms
or broadcasts, or other works or subject matter other than works
listed in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined above) for the purposes of
this License.

*%” Distribute”** means to make available to the public the original
and copies of the Work or Adaptation, as appropriate, through sale
or other transfer of ownership.

x%” Licensor”** means the individual, individuals, entity or entities
that offer(s) the Work under the terms of this License.

x%” Original Author”*% means, in the case of a literary or artistic
work, the individual, individuals, entity or entities who created
the Work or if no individual or entity can be identified , the
publisher; and in addition (i) in the case of a performance the
actors, singers, musicians, dancers, and other persons who act,
sing , deliver , declaim, play in, interpret or otherwise perform
literary or artistic works or expressions of folklore; (ii) in the
case of a phonogram the producer being the person or legal entity
who first fixes the sounds of a performance or other sounds;

and, (iii) in the case of broadcasts, the organization that
transmits the broadcast.

x%” Work” x means the literary and/or artistic work offered under the
terms of this License including without limitation any production in
the literary , scientific and artistic domain, whatever may be the
mode or form of its expression including digital form, such as a
book, pamphlet and other writing; a lecture, address, sermon or
other work of the same nature; a dramatic or dramatico-musical work;
a choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which
are assimilated works expressed by a process analogous to
cinematography; a work of drawing, painting, architecture,
sculpture, engraving or lithography; a photographic work to which
are assimilated works expressed by a process analogous to
photography; a work of applied art; an illustration , map, plan,
sketch or three—-dimensional work relative to geography, topography,
architecture or science; a performance; a broadcast; a phonogram; a
compilation of data to the extent it is protected as a copyrightable
work; or a work performed by a variety or circus performer to the
extent it is not otherwise considered a literary or artistic work.
*%”You”*x means an individual or entity exercising rights under this
License who has not previously violated the terms of this License
with respect to the Work, or who has received express permission
from the Licensor to exercise rights under this License despite a
previous violation.

xx” Publicly Perform”**x means to perform public recitations of the
Work and to communicate to the public those public recitations , by
any means or process, including by wire or wireless means or public
digital performances; to make available to the public Works in such
a way that members of the public may access these Works from a place
and at a place individually chosen by them; to perform the Work to
the public by any means or process and the communication to the

100

105

110

115

120

125

130

135

140

145

150

155

oeis-diagrams CC-BY-NC.md

public of the performances of the Work, including by public digital
performance; to broadcast and rebroadcast the Work by any means
including signs, sounds or images.

i. xx”Reproduce”** means to make copies of the Work by any means
including without limitation by sound or visual recordings and the
right of fixation and reproducing fixations of the Work, including
storage of a protected performance or phonogram in digital form or
other electronic medium.

*%2. Fair Dealing Rights.*x Nothing in this License is intended to
reduce, limit, or restrict any uses free from copyright or rights
arising from limitations or exceptions that are provided for in
connection with the copyright protection under copyright law or other
applicable laws.

xx3. License Grant.xx Subject to the terms and conditions of this
License , Licensor hereby grants You a worldwide, royalty -free,
non—-exclusive , perpetual (for the duration of the applicable copyright)
license to exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more
Collections , and to Reproduce the Work as incorporated in the
Collections;

b. to create and Reproduce Adaptations provided that any such
Adaptation, including any translation in any medium, takes
reasonable steps to clearly label, demarcate or otherwise identify
that changes were made to the original Work. For example, a
translation could be marked ”"The original work was translated from
English to Spanish,” or a modification could indicate "The original
work has been modified.”;

c. to Distribute and Publicly Perform the Work including as
incorporated in Collections; and,

d. to Distribute and Publicly Perform Adaptations.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights
in other media and formats. Subject to Section 8(f), all rights not
expressly granted by Licensor are hereby reserved, including but not
limited to the rights set forth in Section 4(d).

xx4. Restrictions.x* The license granted in Section 3 above is expressly
made subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms
of this License. You must include a copy of, or the Uniform Resource
Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any
terms on the Work that restrict the terms of this License or the
ability of the recipient of the Work to exercise the rights granted
to that recipient under the terms of the License. You may not
sublicense the Work. You must keep intact all notices that refer to
this License and to the disclaimer of warranties with every copy of
the Work You Distribute or Publicly Perform. When You Distribute or
Publicly Perform the Work, You may not impose any effective
technological measures on the Work that restrict the ability of a
recipient of the Work from You to exercise the rights granted to

39

160

165

170

175

180

185

190

195

200

205

210

oeis-diagrams CC-BY-NC.md

40

that recipient under the terms of the License. This Section 4(a)
applies to the Work as incorporated in a Collection, but this does
not require the Collection apart from the Work itself to be made
subject to the terms of this License. If You create a Collection,
upon notice from any Licensor You must, to the extent practicable ,
remove from the Collection any credit as required by Section 4(c),
as requested. If You create an Adaptation, upon notice from any
Licensor You must, to the extent practicable, remove from the
Adaptation any credit as required by Section 4(c), as requested.
You may not exercise any of the rights granted to You in Section 3
above in any manner that is primarily intended for or directed
toward commercial advantage or private monetary compensation. The
exchange of the Work for other copyrighted works by means of digital
file —sharing or otherwise shall not be considered to be intended for
or directed toward commercial advantage or private monetary
compensation, provided there is no payment of any monetary
compensation in connection with the exchange of copyrighted works.
If You Distribute, or Publicly Perform the Work or any Adaptations
or Collections, You must, unless a request has been made pursuant to
Section 4(a), keep intact all copyright notices for the Work and
provide, reasonable to the medium or means You are utilizing: (i)
the name of the Original Author (or pseudonym, if applicable) if
supplied , and/or if the Original Author and/or Licensor designate
another party or parties (e.g., a sponsor institute, publishing
entity , journal) for attribution (” Attribution Parties”) in
Licensor ’s copyright notice, terms of service or by other reasonable
means, the name of such party or parties; (ii) the title of the Work
if supplied; (iii) to the extent reasonably practicable, the URI, if
any, that Licensor specifies to be associated with the Work, unless
such URI does not refer to the copyright notice or licensing
information for the Work; and, (iv) consistent with Section 3(b), in
the case of an Adaptation, a credit identifying the use of the Work
in the Adaptation (e.g., "French translation of the Work by Original
Author,” or ”Screenplay based on original Work by Original Author”).
The credit required by this Section 4(c) may be implemented in any
reasonable manner; provided, however, that in the case of a
Adaptation or Collection, at a minimum such credit will appear, if a
credit for all contributing authors of the Adaptation or Collection
appears, then as part of these credits and in a manner at least as
prominent as the credits for the other contributing authors. For the
avoidance of doubt, You may only use the credit required by this
Section for the purpose of attribution in the manner set out above
and, by exercising Your rights under this License, You may not
implicitly or explicitly assert or imply any connection with,
sponsorship or endorsement by the Original Author, Licensor and/or
Attribution Parties, as appropriate, of You or Your use of the Work,
without the separate, express prior written permission of the
Original Author, Licensor and/or Attribution Parties.

For the avoidance of doubt:

i. «*xNon-waivable Compulsory License Schemes#*x. In those
jurisdictions in which the right to collect royalties through
any statutory or compulsory licensing scheme cannot be waived ,
the Licensor reserves the exclusive right to collect such
royalties for any exercise by You of the rights granted under
this License;

ii. *xWaivable Compulsory License Schemesx%. In those jurisdictions

215

220

225

230

235

240

245

250

255

260

265

oeis-diagrams CC-BY-NC.md

in which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor reserves
the exclusive right to collect such royalties for any exercise
by You of the rights granted under this License if Your exercise
of such rights is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(b) and otherwise
waives the right to collect royalties through any statutory or
compulsory licensing scheme; and,

iii. **xVoluntary License Schemes*%. The Licensor reserves the right
to collect royalties, whether individually or, in the event that
the Licensor is a member of a collecting society that
administers voluntary licensing schemes, via that society , from
any exercise by You of the rights granted under this License
that is for a purpose or use which is otherwise than
noncommercial as permitted under Section 4(c).

e. Except as otherwise agreed in writing by the Licensor or as may be
otherwise permitted by applicable law, if You Reproduce, Distribute
or Publicly Perform the Work either by itself or as part of any
Adaptations or Collections, You must not distort , mutilate, modify
or take other derogatory action in relation to the Work which would
be prejudicial to the Original Author’s honor or reputation.
Licensor agrees that in those jurisdictions (e.g. Japan), in which
any exercise of the right granted in Section 3(b) of this License
(the right to make Adaptations) would be deemed to be a distortion ,
mutilation , modification or other derogatory action prejudicial to
the Original Author’s honor and reputation, the Licensor will waive
or not assert, as appropriate, this Section, to the fullest extent
permitted by the applicable national law, to enable You to
reasonably exercise Your right under Section 3(b) of this License
(right to make Adaptations) but not otherwise.

x*xb. Representations, Warranties and Disclaimer*x

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

*%6. Limitation on Liability.+x EXCEPT TO THE EXTENT REQUIRED BY
APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL
THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF
LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

**%x7. Termination *x*

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Adaptations or Collections
from You under this License, however, will not have their licenses
terminated provided such individuals or entities remain in full
compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will

41

270

275

280

285

290

295

300

305

310

315

320

325

oeis-diagrams CC-BY-NC.md

*% 8.

survive any termination of this License.

Subject to the above terms and conditions, the license granted here
is perpetual (for the duration of the applicable copyright in

the Work). Notwithstanding the above, Licensor reserves the right to
release the Work under different license terms or to stop
distributing the Work at any time; provided, however that any such
election will not serve to withdraw this License (or any other
license that has been, or is required to be, granted under the terms
of this License), and this License will continue in full force and
effect unless terminated as stated above.

Miscellaneous *xx

Each time You Distribute or Publicly Perform the Work or a
Collection ; the Licensor offers to the recipient a license to the
Work on the same terms and conditions as the license granted to You
under this License.

Each time You Distribute or Publicly Perform an Adaptation, Licensor
offers to the recipient a license to the original Work on the same
terms and conditions as the license granted to You under

this License.

If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability
of the remainder of the terms of this License, and without further
action by the parties to this agreement, such provision shall be
reformed to the minimum extent necessary to make such provision
valid and enforceable.

No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in
writing and signed by the party to be charged with such waiver

or consent.

This License constitutes the entire agreement between the parties
with respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not

specified here. Licensor shall not be bound by any additional
provisions that may appear in any communication from You. This
License may not be modified without the mutual written agreement of
the Licensor and You.

The rights granted under, and the subject matter referenced, in this
License were drafted utilizing the terminology of the Berne
Convention for the Protection of Literary and Artistic Works (as
amended on September 28, 1979), the Rome Convention of 1961, the
WIPO Copyright Treaty of 1996, the WIPO Performances and Phonograms
Treaty of 1996 and the Universal Copyright Convention (as revised on
July 24, 1971). These rights and subject matter take effect in the
relevant jurisdiction in which the License terms are sought to be
enforced according to the corresponding provisions of the
implementation of those treaty provisions in the applicable national
law. If the standard suite of rights granted under applicable
copyright law includes additional rights not granted under this
License, such additional rights are deemed to be included in the
License; this License is not intended to restrict the license of any
rights under applicable law.

> ### Creative Commons Notice

>

> Creative Commons is not a party to this License, and makes no warranty

42

330

335

340

345

10

10

15

20

oeis-diagrams .gitignore

N VVVVVVVVVVVVYVYVVYVYVYVY

whatsoever in connection with the Work. Creative Commons will not be
liable to You or any party on any legal theory for any damages
whatsoever , including without limitation any general, special,
incidental or consequential damages arising in connection to this
license. Notwithstanding the foregoing two (2) sentences, if Creative
Commons has expressly identified itself as the Licensor hereunder, it
shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark ”Creative Commons” or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then—current trademark usage
guidelines , as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of doubt,
this trademark restriction does not form part of the License.

Creative Commons may be contacted at <https://creativecommons.org/>.

5 .gitignore

.cabal -sandbox
cabal.sandbox. config

* X X X X X X ¥

.aux
. hi

.log
.0

. pdf
.png
.SVg
.tex

26 README.md

OEIS Diagrams

Some diagrams of sequences from:

>

a

The Online Encyclopedia of Integer Sequences <https://oeis.org>

registered trademark of The OEIS Foundation, Inc.

The OEIS is licensed under CC-BY-NC:
<https://creativecommons.org/licenses /by-nc/3.0/>

This diagramming project is neither endorsed by or affiliated with OEIS.

Running the code

In the absence of a cabal file for the project, you can do this:

cabal sandbox init
cabal install diagrams diagrams-cairo

43

25

30

44

oeis-diagrams

README.md

——allow —newer flag only needed on ghc-8.2.1 as of 2017-11-11

cabal install diagrams-pgf ——allow-newer
most of them use the SVG backend, only 2016 is PGF, so try this
cabal exec —-- runghc dir/file.hs -w 1000 -o output.svg

or even
for h in */x.hs
do

cabal exec —— runghc "${h}” —-w 1000 -o "${h}.svg”
done

