snowglobe

Claude Heiland-Allen

2012-2016

Contents

back.png 2
cards.sh . . . L 2
edZE.PIE .« o o 3
gitignore L 3
Hyperbolic.hs o o 3
LICENSE . . . e 4
Setup.his 16
snowglobe.cabal 16
SnowGlobe.hs e 17
Vector.hs o L 27

© 00 3 O U i W N =

[t
o

1 back.png

mathr.co.uk

2 cards.sh

#!/bin /bash

pngtopnm < edge.png > edge.pgm

pngtopnm < back.png > back.pgm

mkdir 4x1

ls snowglobe —x.pgm | sort -R | xargs -n 4 pnmcat -1r | (ecd 4x1 ; pnmsplit)

10

15

10

15

20

25

snowglobe edge.png

mkdir 4x6
ls 4x1/« | xargs -n 6 pnmcat -tb | (cd 4x6 ; pnmsplit)
mkdir 5x7
cd 4x6
for i in =
do
pnmcat —-tb —-black ../edge.pgm $i ../edge.pgm |
pgmtoppm white—black | ppmtopgm | pnmgamma 0.25 |
pnmscale —xysize 1500 2100 | pnmcat —-lr ../back.pgm - |
pnmtopng -force —interlace -phys 11811 11811 1 > ../5x7/8$i.png
done

cd ../5xT7
Is -1sh
3 edge.png

4 .gitignore

dist
.cabal -sandbox
cabal.sandbox. config

5 Hyperbolic.hs

module Hyperbolic where

import Data.Complex
import Vector

newtype H4 = H4{ unH4 :: V4 }
newtype H2 = H2{ unH2 :: V2 }
newtype H =H{ unH :: R }

hdist :: H2 -—> H2 -> H
hdist (H2 z) (H2 w) =H $ acosh (1 + 2 % norm2 (z "=~ w) / ((1 - norm2 z) * (1 -»
& norm2 w)))

h2el :: H-> R
h2el (H z) = sqrt ((cosh z - 1) / (cosh z + 1))

h2e2 :: H2 —> V2

h2e2 h@Q(H2 v) = norm v "% h2el (hdist h (H2 o))
e2hl :: R—>H

e2hl z = hdist (H2 (V2 z 0)) (H2 o)

e2h2 :: V2 —> H2
e2h2 z = H2 (norm z "% (unH $ e2hl (sqrt (norm2 z))))

moebius :: H2 -> H4
moebius (H2 (V2 x y)) = H4 (V4 x y 1 0)

unmoebius :: H4 -> H2

30

35

40

45

50

55

60

10

15

snowglobe LICENSE

unmoebius (H4 (V4 a b ¢ d)) = let (x:+y) = (a:+b)/(c:+d) in H2 (V2 x y)

mlength :: H4 —> R
mlength (H4 (V4 a b ¢ d)) = magnitude (a:+b) / magnitude (c:+d)

rotation :: R -> M4
rotation a=M4d c (-s) 00 s c 00 0010 0O0O0T1
where
c = cos a
s = sin a
translation :: H2 -> M4
translation (H2 (V2 x y))
| 1 >0 = rotation (-s) """ m ""x"" rotation s
| otherwise = m
where

m=M4 fO0Og0O OfOg gOfO0 0goOf

s = phase (x:+y)

1 = magnitude (x:+y)
e = exp 1

f=e+1

g e — 1

rotationAbout :: H2 -> R -> M4
rotationAbout z@(H2 (V2 x y)) a = translation z ""%"" rotation a ""x°" 2
& translation (H2 (V2 (-x) (-y)))

ecircle :: H2 -> H -> (V2, R)
ecircle c@(H2 (V2 ¢x cy)) (H hr) = (ec, er)
where

p = phase (cx :+ cy)

a = unmoebius . H4 $§ translation (H2 (V2 (-hr * cos p) (-hr * sin p))) "%~ »
& unH4 (moebius c¢)

b = unmoebius . H4 $ translation (H2 (V2 (hr % cos p) (hr * sin p))) """ v
& unH4 (moebius c)

ea = h2e2 a

eb = h2e2 b

ec = (ea "+" eb) "% 0.5

er = 0.5 * (sqrt $ norm2 (ea "-" eb))

6 LICENSE

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to

20

25

30

35

40

45

50

55

60

65

70

snowglobe LICENSE

share and change all versions of a program--to make sure it remains free

software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to

your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it , that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

k])

protection , the GPL clearly explains
> and

For the developers’ and authors
that there is no warranty for this free software. For both users
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer

can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we

stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally , every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general —purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

75

80

85

90

95

100

105

110

115

120

125

snowglobe LICENSE

0. Definitions.
”This License” refers to version 3 of the GNU General Public License.

”Copyright” also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

"The Program” refers to any copyrightable work licensed under this
License. FEach licensee is addressed as "you”. ”Licensees” and

"recipients” may be individuals or organizations.

To ”modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a ”"modified version” of the
earlier work or a work ”based on” the earlier work.

A 7covered work” means either the unmodified Program or a work based
on the Program.

To ”propagate” a work means to do anything with it that, without
permission , would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To ”convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays " Appropriate Legal Notices”
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

1. Source Code.

The ”source code” for a work means the preferred form of the work
for making modifications to it. ”Object code” means any non-source
form of a work.

A 7Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The ”System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
”Major Component”, in this context, means a major essential component

130

135

140

145

150

155

160

165

170

175

180

185

snowglobe LICENSE

(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The ” Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content , constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey , without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures .

190

195

200

205

210

215

220

225

230

235

240

snowglobe

LICENSE

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s
users , your or third parties’ legal rights to forbid circumvention of
technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it , in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it , and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices”.

¢) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
”aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

245

250

255

260

265

270

275

280

285

290

295

300

snowglobe LICENSE

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer , valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the

Corresponding Source from a network server at no charge.

c¢) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially , and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities , provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A 7 User Product” is either (1) a ”consumer product”, which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,

305

310

315

320

325

330

335

340

345

350

355

snowglobe LICENSE
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, ”"normally used” refers to a

typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial , industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

"Installation Information” for a User Product means any methods,
procedures , authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient , or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking , reading or copying.

7. Additional Terms.

” Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place

10

360

365

370

375

380

385

390

395

400

405

410

snowglobe LICENSE

additional permissions on material , added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c¢) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered ”further
restrictions” within the meaning of section 10. If the Program as you
received it , or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction , you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files , a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive , may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

11

415

420

425

430

435

440

445

450

455

460

465

470

snowglobe LICENSE

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally , unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover , your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated , you do not qualify to receive new licenses for the same
material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer—to—peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An 7entity transaction” is a transaction transferring control of an
organization , or substantially all assets of one, or subdividing an
organization , or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest , if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

11. Patents.

12

475

480

485

490

495

500

505

510

515

520

525

snowglobe LICENSE

A 7contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s ”contributor version”.
A contributor’s ”"essential patent claims” are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor wversion,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, ”"control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive , worldwide, royalty—-free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a ”patent license” is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To ”grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license ,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available , or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. ”Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If , pursuant to or in connection with a single transaction or
arrangement , you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is ”discriminatory” if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the

13

snowglobe LICENSE

parties who would receive the covered work from you, a discriminatory

530 patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement ,
or that patent license was granted, prior to 28 March 2007.

535
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
540 12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a

545 covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this

550 License would be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
555 permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
560 section 13, concerning interaction through a network will apply to the
combination as such.

14. Revised Versions of this License.

565 The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

570 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License ”or any later version” applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software

575 Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
580 versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
585 permissions. However, no additional obligations are imposed on any

14

590

595

600

605

610

615

620

625

630

635

640

snowglobe LICENSE

author or copyright holder as a result of your choosing to follow a
later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM ”AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS) ,
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the ”copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful ,

15

645

650

655

660

665

670

10

15

snowglobe Setup.hs

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction , make it output a short
notice like this when it starts in an interactive mode:

<program> Copyright (C) <year> <name of author>

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate
parts of the General Public License. Of course, your program’s commands
might be different; for a GUI interface, you would use an ”about box”.

You should also get your employer (if you work as a programmer) or school,
if any, to sign a ”copyright disclaimer” for the program, if necessary.
For more information on this, and how to apply and follow the GNU GPL, see
<http://www.gnu.org/licenses/>.

The GNU General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library , you
may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License. But first , please read
<http://www.gnu.org/philosophy/why-not-1gpl.html>.

7 Setup.hs

import Distribution.Simple
main = defaultMain

8 snowglobe.cabal

Name: snowglobe

Version : 3.0.0.3

Synopsis: randomized fractal snowflakes demo

Description: @snowglobe@ generates random snowflakes using iterated

function systems via OpenGL texture feedback. The
snowflakes interact in a particle system.

Keyboard controls:
x« f, F11: toggle full screen
* shift -R: toggle recording PPM images to stdout

* shift -S: toggle recording PGM images of each
generated flake to the current working directory

% any other key: quit

16

20

25

30

35

40

45

50

55

10

15

snowglobe SnowGlobe.hs

Blog posts:
%* <https://mathr.co.uk/blog/2012-01-12_snowglobe.html>

x <https://mathr.co.uk/blog/2014-12-19v
& _making_seasonal_cards_with_snowglobe.html>

homepage: https://code.mathr.co.uk/snowglobe
License: GPL-3

License-file : LICENSE

Author: Claude Heiland -Allen

Maintainer : claude@mathr. co.uk

Category : Demo

Build -type: Simple

Cabal-version : >=1.6

Executable snowglobe

Main-is : SnowGlobe . hs
other —modules: Vector
GHGC-options: -Wall
Build -depends:

base < 5,

bytestring ,

containers ,

gl—-capture

GLUT,

OpenGL = 3.0.x%

OpenGLRaw ,

random

Source-repository head
type: git
location: https://code.mathr.co.uk/snowglobe. git

Source-repository this

type: git
location : https://code.mathr.co.uk/snowglobe. git
tag: v3.0.0.3

9 SnowGlobe.hs

—— SnowGlobe —-- randomized fractal snowflakes demo
-- (GPL34) 2012,2014,2015,2016 Claude Heiland-Allen <claude@mathr.co.uk>
—— tested with: ghc-7.6.3, ghc-7.8.2, ghc-7.10.1"rc2, ghc-8.0.1

import Vector hiding (i)
import Graphics.UI.GLUT hiding (scale, FramebufferObject)
import qualified Graphics.UI.GLUT as GL
import Graphics.GL

(glTexImage2D

, glClampColor

, glGenerateMipmap

, glGenFramebuffers

, glBindFramebuffer

, glFramebufferTexture2D

, glUniformMatrix3fv

17

20

25

30

35

40

45

50

55

60

65

70

snowglo

be

SnowGlobe.hs

, glGetTexImage

)

import

{_

Graphics.GL. Tokens

(GL.TEXTURE2D

, GL_R32F

, GLRED

, GLRGBA

, GL_.UNSIGNED_BYTE

, GL_FALSE

, GL.CLAMP_VERTEX_COLOR

, GL

.CLAMP READ_COLOR

, GL.CLAMP_FRAGMENT_COLOR

, GL

_ALPHA

, GLFRAMEBUFFER
, GL.COLOR_ATTACHMENTO

-}

import
import
import
import
import
import
import
import
import
import

-

import
import
import
import
import
import

shader
shader
p <-

Control. Exception (evaluate)
Control.Monad (forM_, replicateM , when)

Data.IORef (IORef, modifyIORef, newlORef, readlORef, writeIORef)

Data.List (foldl’, minimumBy)
Data.Ord (comparing)
Data.Map (Map)

qualified Data.Map as M
qualified Data.Set as S
System . Exit (exitSuccess)

System .IO (hPutStrLn, stderr, stdout, hPutStr,

WriteMode) , hPutBuf)
System .Random (randomRIO)
Foreign (alloca, peek, nullPtr, withArray)

Graphics. Rendering . OpenGL. Capture (capturePPM)

Data.ByteString as BS (hPut, pack)
Foreign (Ptr, allocaArray)
Data.Word (Word8)

Maybe String -> Maybe String -> IO Program

mV mF = do
createProgram

vs <—- case mV of
Nothing -> return []
Just v => do

vert <- createShader VertexShader
shaderSourceBS vert $= BS.pack (map (toEnum
compileShader vert

msg <— get (shaderInfoLog vert)

when (not (null msg)) $ hPutStrLn stderr msg
return [vert]

fs <- case mF of
Nothing -> return []
Just f —> do

18

frag <- createShader FragmentShader
shaderSourceBS frag $= BS.pack (map (toEnum
compileShader frag

msg <— get (shaderInfoLog frag)

when (not (null msg)) $ hPutStrLn stderr msg
return [frag]

fromEnum) v)

fromEnum)

f)

withBinaryFile , IOMode(¥

75

80

85

90

95

100

105

110

115

120

125

snowglobe

SnowGlobe.hs

attachedShaders p $= concat [vs, fs]
linkProgram p

msg <- get

(programInfoLog p)

when (not (null msg)) $ hPutStrLn stderr msg

re

type

sum’

sum’

size
size

er

turn p

N = Int

Num a => [a] —> a

= foldl’ (+) 0

: N
= 2048

R

er = 4

accuracy :: R
accuracy = 1 / fromIntegral size

tSiz
tSiz

e :: N
e = 1024

maxSpeed :: R
maxSpeed = 10

data SnowGlobe = SnowGlobe

{

)

)

}

data

pInitial :: Program, plnitial ’er, plInitial 'rho :: UniformLocation
pStep :: Program, pStep’er, pStep’ts, pStep’src :: UniformLocation
pColour :: Program, pColour’src, pColour’speed, pColour’colour

& UniformLocation
tPing, tPong TextureObject , fBuffer :: FramebufferObject
sFlakes :: [Flake], sTextures :: Map N TextureObject
wSize :: Size, wFullScreen :: Maybe Size
sRenderFlake IO Render, sNextName :: N

sRecord, sRecordFlakes :: Bool

Flake = Flake

{ flakeName IN
, flakeTime 'R
, flakePosition V2
, flakeVelocity V2
}

flakeMass Flake -> R

flakeMass f =

flakeSize

let s = flakeSize f in 1 + s * s

Flake —> R

flakeSize f = sin (pi * flakeTime f)

flakeForce

flakeForce f p =
let dQ(V2 x y)

in

m = let d2
(flakeMass

Flake —> V2 —> V2

p ~-" flakePosition f
X * X +y *x y in d2 *x d2
/ m) %" d

7

19

snowglobe SnowGlobe.hs

flakeUpdate :: R —> [Flake] —> Flake —> Flake
flakeUpdate dt fs f = f
130 { flakeTime = flakeTime f + dt / 2
, flakePosition = flakePosition f "+ (dt %~ flakeVelocity f)
, flakeVelocity = mapVector ((* maxSpeed) . tanh . (/ maxSpeed)) $ 0.999 x" (v
& flakeVelocity f "+° ((dt / flakeMass f) x° (flakeField fs (flakePositionys

S)

135 mapVector :: (R -—> R) —> V2 —> V2
mapVector f (V2 x y) = V2 (f x) (f y)

flakeField :: [Flake] -> V2 -> V2
flakeField fs p = foldl’ ("+") o [flakeForce f (p "+°d) | f <= fs, p /= ¥
& flakePosition f, dx <- [-2,0,2], dy <- [-2,0,2], let d = V2 dx dy |
140
flakeSpawn :: [Flake] —> N —> 10 Flake
flakeSpawn fs name = do

xs <- replicateM 32 $ randomRIO (-1, 1)
ys <- replicateM 32 $ randomRIO (-1, 1)
145 let ps = zipWith V2 xs ys
p = fst . minimumBy (comparing snd) . map (\p’ -> (p’, norm2 (flakeField v
- fs p’))) $ ps
return Flake{ flakeName = name, flakeTime = 0, flakePosition = p, ¥
& flakeVelocity = o }
where
norm2 (V2 x y) =x * X +y %y

150
flakesUpdate :: R —> [Flake] —> [Flake]
flakesUpdate dt fs =
let gs = map (flakeUpdate dt fs) fs
alive = filter ((< 1) . flakeTime) gs
155 in map flakeWrap alive
flakeWrap :: Flake —> Flake
flakeWrap f = f{ flakePosition = mapVector wrap (flakePosition f) }
where
160 wrap X =
let y=(x+ 1) / 2
z =y — fromIntegral (floor y :: N)
in z % 2 -1
165 —— amortized rendering over several frames

data Render = Done TextureObject | Step (IO Render)

—— initial pass
flakeRenderStart :: IORef SnowGlobe —> IO Render
170 flakeRenderStart sR = do
s0 <- readIORef sR
p <- replicateM 4 $ randomRIO (0.02, 0.98)

let rts = flakeTransforms p
rho = maximum (map fst rts)
175 ts = map snd rts
passes = clamp 4 256 . round . logBase rho $ accuracy
loadIdentity

ortho2D 0 1 0 1
viewport $= (Position 0 0, Size (fromIntegral size) (fromIntegral size))

20

snowglobe SnowGlobe.hs

180 currentProgram $= Just (plnitial s0)
uniform (plnitial ’er s0) $= TexCoordl (realToFrac er :: GLfloat)
uniform (plnitial 'rho s0) $= TexCoordl (realToFrac rho :: GLfloat)
bindFBO (fBuffer s0) (tPing s0)
unitQuad

185 unbindFBO

currentProgram $= Nothing
return $ Step (flakeRenderPass sR ts passes passes)

getUniformLocation :: UniformLocation —> GLint
190 getUniformLocation (UniformLocation u) = u

—— multi step passes
flakeRenderPass :: IORef SnowGlobe —> [M3] —> N -> N -> IO Render
flakeRenderPass sR _ passes 0 = flakeRenderFinish sR passes
195 flakeRenderPass sR ts passes n = do
s0 <— readIORef sR
loadIdentity
ortho2D 0 1 0 1
viewport $= (Position 0 0, Size (fromIntegral size) (fromIntegral size))

200 currentProgram $= Just (pStep s0)
uniform (pStep’er s0) $= TexCoordl (realToFrac er :: GLfloat)
uniform (pStep’src s0) $= TexCoordl (0 :: GLint)
withArray (map ((realToFrac :: Float —> GLfloat) . (realToFrac :: Double -> v

& Float)) . concatMap matrixToList $§ ts) $ glUniformMatrix3fv (v~
& getUniformLocation $ pStep’ts s0) 6 1
bindFBO (fBuffer s0) (tPong s0)

205 textureBinding Texture2D $= Just (tPing s0)

unitQuad

textureBinding Texture2D $= Nothing

unbindFBO

writeIORef sR s0{ tPing = tPong s0, tPong = tPing s0 }
210 currentProgram $= Nothing

if even n
then return $ Step (flakeRenderPass sR ts passes (n - 1))
else flakeRenderPass sR ts passes (n — 1)

215 matrixToList :: M3 -> [R]
matrixToList (M3 a bcde f ghi)=[a,b,c,d,e,f,g,h,i]

—— colourize pass
flakeRenderFinish :: IORef SnowGlobe —> N —-> IO Render
220 flakeRenderFinish sR passes = do
s0 <- readlIORef sR
t <- newTexRGBA tSize
bindFBO (fBuffer s0) t
loadIdentity
225 ortho2D (-1) 1 (-1) 1
viewport $= (Position 0 0, Size (fromIntegral tSize) (fromIntegral tSize))
textureBinding Texture2D $= Just (tPong s0)
currentProgram $= Just (pColour s0)

uniform (pColour’src s0) $= TexCoordl (0 :: GLint)
230 uniform (pColour’speed s0) $= TexCoordl (1 / fromlIntegral passes :: GLfloat)
uniform (pColour’colour s0) $= TexCoord3 1 1 (1 :: GLfloat)
fullQuad
currentProgram $= Nothing
unbindFBO

21

snowglobe SnowGlobe.hs

235 textureBinding Texture2D $= Just t
glGenerateMipmap GL.TEXTURE_2D
textureBinding Texture2D $= Nothing
return $ Done t

240 transformRST :: R -> R -> V2 -> M3
transformRST a 1 (V2 x y) =M3c s x (-s) cy 001
where ¢ = 1 % cos a
s =1 % sin a

245 flakeTransforms R] -=> [(R, M3)]

[
flakeTransforms [a,b,c,d] [(la,inv ta),(lb,inv tb),(lc,inv tcl),(1d,inv tdl), (v
G le,inv tc2) ,(ld,inv td2)]
where
Ix =a+ b
ly =2 % (¢ + d)
250 la =a / Ix
Ib =b / Ix
le =c¢ / ly
Id =d / ly
u =V200
255 v =V2 0 la
1 = pi / 3
11 =2 % pi / 3
r = -1
rr = —11
260 ta = transformRST 0 la u
tb = transformRST 0 1lb v
tcl = transformRST 1 lc v
tc2 = transformRST r lc v
tdl = transformRST 11 1d v
265 td2 = transformRST rr 1d v
flakeTransforms _ = error "flakeTransforms”
main :: 10 ()
main = do
270 _ <— getArgsAndInitialize
let wSize’ = Size 1280 720

initialWindowSize $= wSize’
initialDisplayMode $= [DoubleBuffered]
_ <- createWindow ”SnowGlobe”
275 plnitial”’ <- shader Nothing (Just $ unlines
[7uniform float er;”
, 7uniform float rho;”

79

, "void main() {”

280 , 7 vec2 p =cer x (gl-TexCoord[0].xy * 2.0 - vec2(1.0));”
, 7 float 1 = length(p);”
, 7 float n;”
, 7 it (1 >=er) {7
, 7 n= 0.0;"
285 , 7} else if (er > 1 && 1 >= rho * er) {”
;7 n = (log(er) - log(l)) / -log(rho);”
, 7} else {7
, 7 n= -1.0;”
290 , 7 gl.FragData[0] = vec4(n);”

22

295

300

305

310

315

320

325

330

335

340

345

snowglobe SnowGlobe.hs
, ’7}77
1)
pInitial ’er’ <- get $ uniformLocation plInitial’ “er”
pInitial "tho’ <- get $ uniformLocation plInitial’ ”rho”

pStep’

<- shader Nothing (Just $ unlines

[7uniform float er;”
, "uniform mat3 ts[6];”

99

, 7uniform sampler2D src;”

9

, "void main() {

”

vec2 p0 = er x (gl-TexCoord[0].xy * 2.0 - vec2(1.0));”

float m = -1.0;”
for (int i = 0; i < 6; ++i) {”
vecd p = ts[i] * vec3(p0, 1

vec2 q = p.xy / p.z;”
float 1 = length(q);”
if (1 < er) {”
m = max(m, texture2D (src,

}77

}77

if (m>= 0.0) {”
m-+= 1.0;”

}77

m = max(m, texture2D (src,
gl_FragData [0] = vec4 (m);”

.0);”

, 77}77

1)
pStep 'er”’ <- get $ uniformLocation pStep’ “er”
pStep "ts”’ <- get $ uniformLocation pStep’ ”ts”
pStep 'src’ <- get $ uniformLocation pStep’ ”src”
pColour’ <- shader Nothing (Just $ unlines

[7uniform sampler2D

src;”

, 7uniform float speed;”
, 7uniform vec3 colour;”

79

, "void main() {”

”
”
”

”

7Y
)

pColour ’src

vec2 p = gl-TexCoord [0].xy;”
float n = texture2D (src, p).x;
p —= vec2(0.5);”

”

const mat2 r = mat2 (0.5, 0.8660254037844386,
k) ;7’

for (int i =1; i < 6; ++i) {7

p=r % p;”

n = max(n, texture2D (src, p + vec2(0.5)).x)

”

if (n> 0.0) {7
n %= speed;”

} else {7
n= 0.0;"

}77

n x= n;”

n = n;”

gl_FragData[0] = vec4(colour, n);

I

<— get $ uniformLocation pColour’

”

Src

(q / er + vec2(1.0)) / 2.0).x);”

(p0 / er + vec2(1.0)) / 2.0).x);”

-0.8660254037844386, 0.5)v

.
’

”

23

350

355

360

365

370

375

380

385

390

395

snowglobe

SnowGlobe.hs

pColour ’speed’<- get $ uniformLocation pColour’ ”speed”

pColour’colour’<- get $ uniformLocation pColour’ ”colour”
tPing’ <- newTex size

tPong’ <- newTex size

fBuffer’ <- newFBO

glClampColor GL.CLAMP_VERTEX COLOR $ fromIntegral GL_FALSE
glClampColor GL.CLAMP READ_COLOR $ fromIntegral GL_FALSE

glClampColor GL.CLAMPFRAGMENT.COLOR $ fromIntegral GL_FALSE
sR <- newIORef SnowGlobe
{ plInitial = plnitial’, plInitial ’er = plInitial "er’, plInitial 'rho =
& rho’

I

plnitial ’»

, pStep = pStep’, pStep’er = pStep’er’, pStep’ts = pStep’ts’, pStep’src = ¢

’

& pStep’src

, pColour = pColour’, pColour’src = pColour’src’, pColour’speed =
& speed’, pColour’colour = pColour’colour’

, tPing = tPing’, tPong = tPong’, fBuffer = fBuffer’

, sFlakes = [], sTextures = M.empty, wSize = wSize’, wFullScreen =

, sNextName = 0, sRenderFlake = return undefined

, sRecord = False, sRecordFlakes = False

modifyIORef sR $ \s’->s’{ sRenderFlake = flakeRenderStart sR }
addTimerCallback 40 timer

displayCallback $= display sR

reshapeCallback $= Just (reshape sR)

keyboardMouseCallback $= Just (keyboard sR)

mainLoop

pColour ’ v

Nothing

keyboard :: IORef SnowGlobe —-> Key -> KeyState —> Modifiers —> Position -> 10 ()

keyboard sR (SpecialKey KeyF11) Down - _ = toggleFullScreen sR

keyboard sR (Char ’f’) Down _ _ = toggleFullScreen sR

keyboard sR (Char 'R’) Down - _ = modifyIORef sR $ \s -> s{ sRecord = not (¥
& sRecord s)

keyboard sR (Char ’S’) Down _ _ = modifyIORef sR $ \s -> s{ sRecordFlakes = not v
& (sRecordFlakes s) }

keyboard _ (Char _) Down . _ = exitSuccess

keyboard _ _ _ _ _ = return ()

toggleFullScreen :: IORef SnowGlobe —> I0 ()
toggleFullScreen sR = do
s <- readlORef sR
case wFullScreen s of
Nothing -> do
writeIORef sR s{ wFullScreen = Just (wSize s) }
cursor $= None
fullScreen
Just ws —> do
writeIORef sR s{ wFullScreen = Nothing }
cursor $= Inherit
windowSize $= ws

reshape :: IORef SnowGlobe —> Size -> 10 ()
reshape sR sz = do

s <- readlORef sR

writeIORef sR s{ wSize = sz }

timer :: IO ()
timer = do

24

400

405

410

415

420

425

430

435

440

445

450

455

snowglobe

SnowGlobe.hs

addTimerCallback 40 timer
postRedisplay Nothing

display’

_ <- evaluate

IORef SnowGlobe —> 10 ()
display > sR = do
update sR
s <- readlORef sR

(sum’ . map flakeName . sFlakes $ s)

let names = S.fromList $ map flakeName (sFlakes s)
expired = S. filter (‘S.notMember‘ names) (M.keysSet (sTextures s))

)

sTextures’ =
deleteObjectNames
modifyIORef sR $ \s’->s’{ sTextures = sTextures’ }
r <- sRenderFlake s
case r of
Done t —> do
f <- flakeSpawn (sFlakes s) (sNextName s)
modifyIORef sR § \s'->s’
sRenderFlake = flakeRenderStart sR

{

I
’

)

sFlakes =
sTextures
sNextName

foldr M. delete (sTextures s) (S.toList expired)
[sTextures s M.! n | n <- S.toList expired]

f : sFlakes s’

= M. insert (flakeName f) t (sTextures s’)

= sNextName s’ + 1

when (sRecordFlakes s) §$

saveTexture t (”snowglobe-" ++ show (flakeName f) 4++ ”.pgm”)

Step sRenderFlake’ —>

modifyIORef sR $§ \s’->s’{ sRenderFlake = sRenderFlake’ }

update

display

IORef SnowGlobe —> 10 ()
update sR = do
s <- readlORef sR
let sFlakes’ = flakesUpdate (1 / 256) (sFlakes s)
writeIORef sR (s{ sFlakes = sFlakes’ })

IORef SnowGlobe —> 10 ()
display sR = do
s <- readlORef sR

loadIdentity
let Size w h = wSize s
r = 0.7
(x, y)
| h <w = (r, r * fromIntegral h / fromIntegral w)
| otherwise = (r % fromIntegral w / fromIntegral h, r)

ortho2D (-x) x (-y) ¥y

viewport $= (Position 0 0, wSize s)
clearColor $= Color4 0 0 0.25 1
clear [ColorBuffer|

texture Texture2D $= Enabled

blend $= Enabled
blendFunc $= (SrcAlpha, OneMinusSrcAlpha)
forM_ (sFlakes s)
blend $= Disabled
texture Texture2D $= Disabled
swapBuffers
when (sRecord s) $ hPut stdout =<< capturePPM
reportErrors

display ’

sR

(flakeDraw s)

25

460

465

470

475

480

485

490

495

500

505

snowglobe SnowGlobe.hs

flakeDraw :: SnowGlobe -> Flake -> IO ()
flakeDraw s f = do
let d :: GLdouble
d = realToFrac $ flakeSize f / 4
GLdouble
= realToFrac $ 360 % flakeTime f % sin (fromlIntegral (flakeName f))
GLdouble -> GLdouble -> 10 ()
u v = do
texCoord $§ TexCoord2 ((1+4u)/2) ((14v)/2)
vertex $ Vertex2 u v
V2 x y = flakePosition f
case flakeName f ‘M.lookup‘ sTextures s of
Nothing -> return ()
t > do
textureBinding Texture2D $= t
unsafePreservingMatrix $ do
translate $ Vector3d (realToFrac x :: GLdouble) (realToFrac y :: GLdoublev
G)0
rotate a (Vector3d 0 0 1)
GL.scale d d d
renderPrimitive Quads $ p (-1) (-1) > p 1 (-1) > p 1 1> p (-1) 1
textureBinding Texture2D $= Nothing

T T v

newTex :: N —> IO TextureObject

newTex s = do
[t] <- genObjectNames 1
textureBinding Texture2D $= Just t
glTexImage2D GL.TEXTUREZ2D 0 (fromIntegral GL_R32F) (fromIntegral s) (v

& fromlIntegral s) 0 GLRED GL.UNSIGNEDBYTE nullPtr

textureFilter Texture2D $= ((Linear’, Nothing), Linear’)
textureWrapMode Texture2D S $= (Repeated, ClampToEdge)
textureWrapMode Texture2D T $= (Repeated, ClampToEdge)
textureBinding Texture2D $= Nothing
return t

newTexRGBA :: N —> IO TextureObject
newTexRGBA s = do
[t] <- genObjectNames 1
textureBinding Texture2D $= Just t
glTexImage2D GL.TEXTUREZ2D 0 (fromIntegral GLRGBA) (fromlIntegral s) (v~
& fromIntegral s) 0 GLRGBA GL_.UNSIGNEDBYTE nullPtr
textureFilter Texture2D $= ((Linear’, Just Linear’), Linear’)
textureWrapMode Texture2D S $= (Repeated, ClampToEdge)
textureWrapMode Texture2D T $= (Repeated, ClampToEdge)
textureBinding Texture2D $= Nothing

return t
saveTexture :: TextureObject —> FilePath -> IO ()
saveTexture t f = withBinaryFile f WriteMode $ \h -> do
let header = "P5\n” 4+ show tSize 4++ 7 7 4+ show tSize ++ 7\n255\n”
n = tSize x tSize

hPutStr h header

allocaArray n $ \p —> do
textureBinding Texture2D $= Just t
glGetTexImage GL.TEXTURE2D 0 GLALPHA GL.UNSIGNEDBYTE (p :: Ptr Word8)
textureBinding Texture2D $= Nothing

26

510

515

520

525

530

535

540

545

550

10

snowglobe Vector.hs

hPutBuf h p n
newtype FramebufferObject = FramebufferObject GLuint

newFBO :: IO FramebufferObject
newFBO = fmap FramebufferObject (alloca $ \p —> glGenFramebuffers 1 p >> peek p)

bindFBO :: FramebufferObject —> TextureObject —-> 10 ()
bindFBO (FramebufferObject f) (TextureObject t) = do
glBindFramebuffer GLFRAMEBUFFER f
glFramebufferTexture2D GLFRAMEBUFFER GL.COLORATTACHMENTO GL.TEXTURE2D t 0

unbindFBO :: IO ()

unbindFBO = do
glFramebufferTexture2D GLFRAMEBUFFER GL.COLORATTACHMENTO GL.TEXTURE2D 0 0
glBindFramebuffer GLFRAMEBUFFER 0

fullQuad :: IO ()
fullQuad = do
renderPrimitive Quads $ do

t (0.5-r) (0.5+4r) > v (-r2) (r2)

t (0.5-r) (0.5-r) > v (-r2) (-r2)

t (0.54r) (0.5-r) > v (r2) (-r2)

t (0.54r) (0.5+4r) > v (r2) (r2)
where

r = sqrt 0.5 / realToFrac er

r2 =1

t, v :: GLdouble -> GLdouble —> IO ()
= texCoord (TexCoord2 x y)
= vertex (Vertex2 x y)

t x vy
V XYy

unitQuad :: I0 ()

unitQuad = renderPrimitive Quads $ do
t 01>v 01
t 00>v 00
t10>v10
t 1 1>v 11
where

t, v :: GLdouble -> GLdouble —> IO ()

t x y = texCoord (TexCoord2 x y)

v x y = vertex (Vertex2 x y)
clamp :: Ord a => a -> a -> a —-> a
clamp mi ma x = mi ‘max‘ x ‘min‘ ma

10 Vector.hs

{-# LANGUAGE MultiParamTypeClasses, TypeSynonymlInstances #-}
module Vector where

type R = Double

data V1 = V1 IR deriving (Show, Eq, Ord)

data V2 = V2 IR IR deriving (Show, Eq, Ord)

data V3 = V3 IR IR IR deriving (Show, Eq, Ord)
data V4 = V4 IR IR IR IR deriving (Show, Eq, Ord)

27

15

20

25

30

35

40

45

50

55

60

65

snowglobe

Vector.hs

class V a where
roa

+7) ioa

"TA) ..

*

"/
t

o

Q. ~~—~—~—~0
~— — —

oo I
[
\

:'Va=>a
let d =

(=1

w -] v =

norm

norm v =v "/

instance V V1
o=V10
V1 a "+° V1
V1l a "=~ V1
k *~ V1 x =
V1 a "% k =
Via "/ k=
V1 a ‘dot‘ VI x

sqrt

> o oo

> a

u

where

instance V V2 where

o=V200

V2 a b "+7 V2 x
V2 a b "-" V2 x
k «* V2 x y =
V2 a b "x k =
V2 ab "/ k=
V2 a

b ‘dot‘ V2 x y

instance V V3 where

0=V3000

|
Vv
Ty vy oo

-> R

"= v in d ‘dot‘ d

i Va=>a->a

(vidot ‘v)

x = V1 (a + x)
x = V1 (a - x)
V1 (k * x)

V1 (a
V1 (a

* k)
/ k)

a *x X

Y
—
® oo R |+
TR A<
—_—— — o~ —~

S]
+ >~ % % KM

oo
I+
<<

V3 a
V3 a
k x°
V3 a
V3 a
V3 a

cross3
crossd

V3 (a

instanc

<<

Xy z
Xy z
V3 (k
V3 (a
V3 (a

N~ % % |

V3 —> V3 —> V3
(V3 al a2 a3)
2%b3-a3xb2)

e V V4 where

o=V40000

V4 a
V4 a
k
V4 a
V4 a

b cd "+" V4
bcd"-" V4
Vixyzw-=
"« k = V4 (a
"/ k=V4 (a

XV 2z
Xy 2z

V4 (k

I = = ™

w

—_—— W

A~~~ o~ o~
¥ OO X

b cd
b cd
V4 a b c d

data M1l = Ml

28

w
w
*
*
/
Z

‘dot ¢ V4 x y

I+

+ m R KR

WO~ % ¥

IR deriving (Show, Eq,

NGNS
~ o~~~ —~
¥ 0O o x o o

&~ ¥ ¥

(V3 bl b2 b3) =
(a3*bl-al*b3)

(alxb2-a2xbl)

snowglobe Vector.hs

data M2 = M2 IR IR 'R IR deriving (Show, Eq, Ord)
data M3 =M3 IR 'R 'R 'R /R 'R !R !R IR deriving (Show, Eq, Ord)
70 data MA=M4 'R IR 'R 'R 'R /R !R!'R !R !R !R!R R !R IR !R deriving (Show, v
& Eq, Ord)

class M a where

i roa
"+ a->a-> a
75 (" ="") a -—>a -> a
("% 7) a -—>a -> a
(x"7) R->a->a
("7 x*) a >R -> a
/) a-—>R->a
80 mdot a > a >R
det a —> R
inv a —> a
(=11 :: Ma=>a->a->R
8% u ||-|]] v=1let d=u ""=-"" v in d ‘mdot‘ d
instance M M1 where
i =M1
Ml all ""4"" Ml bll = Ml (all + bll)
90 Ml all “*="" Ml bll = Ml (all - bll)

M1l all ""%"" Ml bll Ml (all * bll)
a x°° Ml bll = M1 (a * bll)
Ml all """ b = Ml (all % b)
Ml all *°/ b =Ml (all / b)

95 Ml all ‘mdot‘ Ml bll = (all * bll)
det (M1l all) = all
inv (Ml all) Ml (1/all)

instance M M2 where
100 i=M21001
M2 all al2 a2l a22 "“"+"" M2 bll bl2 b2l b22 =
M2 (all + bll) (al2 + bl2) (a2l + b21) (a22 + b22)

M2 all al2 a21 a22 ""-"" M2 bll bl2 b21 b22 =
M2 (all - bll) (al2 - b12) (a2l - b21) (a22 — b22)
105 M2 all al2 a2l a22 ""%~" M2 bll bl2 b21 b22 =
M2 (all*bll + al2xb21) (allxbl2 4+ al2xb22) (a21xbll + a22xb21) (a21xbl2 + v
G a22%b22)

a +°° M2 bll b12 b21 b22 = M2 (a % bll) (a = b12) (a * b21) (a * b22)
M2 all al2 a2l a22 """ b = M2 (all * b) (al2 % b) (a2l x b) (a22 x b)
M2 all al2 a2l a22 "/ b = M2 (all / b) (al2 / b) (a21 / b) (a22 / b)
110 M2 all al2 a2l a22 ‘mdot‘ M2 bll bl2 b21 b22 =
all+*bll 4+ al2xbl2 + a21xb21 4+ a22xb22
det (M2 all al2 a2l a22) = all * a22 — al2 % a2l
inv a@(M2 all al2 a2l a22) = (M2 a22 (-al2) (-a2l) all) "/ det a

115 instance M M3 where

i=M3100010001

M3 all al2 al3 a2l a22 a23 a3l a32 a33 ""+°° M3 bll bl2 bl3 b21 b22 b23 b3l 2
& b32 b33 =

M3 (all + bll) (al2 + bl2) (al3 4+ bl3) (a2l + b21) (a22 + b22) (a23 + b23) (¥
G a3l 4+ b31) (a32 4+ b32) (a33 + b33)

M3 all al2 al3 a2l a22 a23 a3l a32 a33 ""-"" M3 bll bl2 bl3 b21 b22 b23 b3l v

& b32 b33 =

29

snowglobe Vector.hs

120 M3 (all — bll) (al2 - b12) (al3 - b13) (a2l — b21) (a22 — b22) (a23 - b23) (v
G a3l - b31l) (a32 - b32) (a33 - b33)
M3 all al2 al3 a2l a22 a23 a3l a32 a33 "~"x°" M3 bll bl2 bl3 b21 b22 b23 b3l v
& b32 b33 =
M3 (allxbll + al2%b21 + al3xb31) (allxbl2 + al2xb22 + al3xb32) (allxbl3 + v
G al2xb23 + al3xb33)
(a21%b1l + a22%b21 + a23%b31) (a21xbl2 + a22%b22 + a23%b32) (a2lxbl3 + »
G a22%b23 + a23%b33)
(a31xbll + a32%b21 + a33%b31) (a3lxbl2 + a32xb22 + a33xb32) (a3lxbl3 + »
& a32%b23 4+ a33%b33)
125 a %" M3 bll bl2 bl3 b21 b22 b23 b3l b32 b33 =
M3 (a * bll) (a * bl2) (a * bl3) (a * b21) (a x b22) (a x b23) (a * b3l) (a »
G * b32) (a * b33)
M3 all al2 al3 a2l a22 a23 a3l a32 a33 "“x b
M3 (all *x b) (al2 = b) (al3 * b) (a2l x b)
& a32 * b) (a33 % Db)
M3 all al2 al3 a2l a22 a23 a3l a32 a33 """/ b =
130 M3 (all / b) (al2 / b) (al3 / b) (a2l / b) (a22 / b) (a23 / b) (a3l / b) (¥
& a32 / b) (a33 / b)
M3 all al2 al3 a2l a22 a23 a3l a32 a33 ‘mdot‘ M3 bll bl2 bl3 b21 b22 b23 b3l v
& b32 b33 =
all+*bll + al2xbl2 4 al3xbl3 +
a21%b21 + a22xb22 4 a23xb23 +
a3l*b31 + a32xb32 + a33xb33
135 det (M3 all al2 al3 a2l a22 a23 a3l a32 a33) =
let mll = M2 a22 a23 a32 a33
ml2 = M2 a2l a23 a3l a33
ml3 = M2 a2l a22 a3l a32
in all * det mll - al2 % det ml2 + al3 * det ml3

?a22 * b) (a23 % b) (a3l x b) (¥

140 inv a@(M3 all al2 al3 a2l a22 a23 a3l a32 a33) =
let mll = a33 *x a22 - a32 x a23
ml2 = —(a33 * al2 - a32 x al3)
ml3 = a23 x al2 - a22 x al3
m2l = —(a33 * a2l - a3l x a23)
145 m22 = a33 * all - a3l * al3
m23 = —(a23 * all — a2l x al3)
m3l = a32 * a2l - a3l * a22
m32 = —(a32 * all - a3l * al2)
m33 = a22 x all - a2l x al2
150 in (M3 mll ml2 ml3 m2]l m22 m23 m31 m32 m33) """/ det a

instance M M4 where
i=M410000100001O0O0O0O0T1
M4 all al2 al3 al4 a2l a22 a23 a24 a3l a32 a33 a34 a4l ad42 ad43 ad44 "~~+"°" M4 »
& bll bl2 bl3 bl4 b21 b22 b23 b24 b3l b32 b33 b34 b4l b42 b4d3 bd4d =

155 M4 (all + bll) (al2 + b12) (al3 + b13) (ald + bld)
(a21 + b21) (a22 + b22) (a23 + b23) (a24 + b24)
(a31 4+ b31) (a32 + b32) (a33 + b33) (a34 + b34)
(a4l + bdl) (ad2 + b42) (ad3 + b43) (add + bdd)
M4 all al2 al3 al4 a2l a22 a23 a24 a3l a32 a33 a34 a4l ad42 a43 a44 ~"-"" M4 v
& bll bl2 bl3 bl4 b21 b22 b23 b24 b3l b32 b33 b34 b4l bd42 bd3 bd4d =
160 M4 (all - bll) (al2 - bl2) (al3 - bl3) (ald - bld)
(a21 - b21) (a22 - b22) (a23 — b23) (a24 - b24)
(a31 - b31) (a32 - b32) (a33 — b33) (a34 — b34)

(a4l - b4l) (a42 - b42) (ad43 - b43) (ad4d - b44)
M4 all al2 al3 al4 a2l a22 a23 a24 a3l a32 a33 a34 a4l ad42 ad43 ad44 """~ M4 v
& bll bl2 bl3 bl4 b21 b22 b23 b24 b3l b32 b33 b34 b4l bd42 bd3 b4 =

30

snowglobe Vector.hs

165 M4 (allsbll + al2xb21 4+ al3%b31 + aldxb4l) (allxbl2 + al2xb22 + al3xb32 + »
G ald4xb42) (allxbl3 4+ al2xb23 + al3xb33 + aldxb43) (allxbld + al2xb24 + v
& al3xb34 + aldxbd4)
(a21%bll + a22%b21 + a23%b31 + a24xb4l) (a2l*xbl2 + a22xb22 + a23%b32 + v
G a24xb42) (a21xbl3 + a22xb23 + a23xb33 + a24xb43) (a2lxbld + a22xb24v
G+ a23%b34 + a24xbdd)
(a31xbll + a32%b21 + a33%*b31 + a34xb4l) (a3l*xbl2 + a32xb22 4+ a33%b32 + v
& a34xb42) (a31xbl3 + a32xb23 + a33xb33 + a34xb43) (a3lxbld + a32xb24v
& 4 a33xb34 + a34xbdd4)
(a4lxbll + a42%b21 + a43%*b31 + ad44xbdl) (adl*xbl2 + a42xb22 4 a43%b32 + v
G a44xb42) (adlxbl3 + ad2xb23 + ad3xb33 + addxb43) (adlxbld + ad2xb24v
G+ a43xb34 + addxbdd)
a *~" M4 bll bl2 bl3 bl4 b21 b22 b23 b24 b3l b32 b33 b34 b4l b42 bd3 bd4 =
170 M4 (a * bll) (a * bl2) (a * bl3) (a * bl4)
(a = b21) (a % b22) (a % b23) (a * b24)
(a = b31) (a % b32) (a % b33) (a % b34)
(a * b4l) (a = b42) (a * b43) (a x bd4)
M4 all al2 al3 al4 a2l a22 a23 a24 a3l a32 a33 a34 a4l a42 ad43 ad44d "~"x b =
175 M4 (all % b) (al2 = b) (al3 * b) (ald x b)
(a21 % b) (a22 % b) (a23 x b) (a24 % b)
(a31 % b) (a32 % b) (a33 % b) (a34 % b)
(a4l % b) (a42 % b) (a43 % b) (ad44d x b)
M4 all al2 al3 al4d a2l a22 a23 a24 a3l a32 a33 a34 a4l ad42 a43 ad44d """/ b =
180 M4 (all / b) (al2 / b) (al3 / b) (ald / Db)
(a21 / b) (a22 / b) (a23 / b) (a24 / b)
(a31 / b) (a32 / b) (a33 / b) (a34 / b)
(a4l / b) (a42 / b) (a43 / b) (a44 / b)
M4 all al2 al3 al4 a2l a22 a23 a24 a3l a32 a33 a34 a4l a42 ad43 a44 ‘mdot‘ M4 v
& bll bl2 b13 bl4 b21 b22 b23 b24 b31 b32 b33 b34 b4l b42 b43 b4 =
185 all«bll + al2xbl2 4+ al3xbl3 + aldxbld +
a21xb21 4+ a22xb22 4+ a23xb23 + a24xb24 +
a3l+%b31 + a32xb32 + a33%b33 + a34xb34 +
a4lxb4l + a42xb42 4+ ad43xb4d3 + ad4dxbd4
det (M4 all al2 al3 al4 a2l a22 a23 a24 a3l a32 a33 a34 a4l a42 a43 ad4d) =
190 let mll = M3 a22 a23 a24 a32 a33 a34 a42 a43 ad4
ml2 = M3 a2l a23 a24 a3l a33 a34 a4l a43 ad4
ml3 = M3 a2l a22 a24 a3l a32 a34 a4l ad42 ad4
ml4d = M3 a2l a22 a23 a3l a32 a33 a4l ad2 a43
in all % det mll — al2 % det ml2 + al3 % det ml3 — al4d x det ml4
195 inv (M4 all al2 al3 al4 a2l a22 a23 a24 a3l a32 a33 a34 a4l a42 a43 ad4d) =
let a = M2 all al2 a2l a22
b = M2 al3 al4d a23 a24
c = M2 a3l a32 a4l a42
d = M2 a33 a34 a43 ad4

200 al = inv a
cal = ¢ ""x"" al
dcabl = inv (d ""=-"" (cal "“"x"" b))

albdcabl = al ""%"" (b ""x"" dcabl)
M2 mll ml2 m21 m22 = al ""+°" (albdcabl ""%"" cal)
205 M2 ml13 ml4 m23 m24 = (-1) *"" albdcabl
M2 m31 m32 m4l m42 = (-1) *°" (dcabl "“"%"" cal)
M2 m33 m34 m43 m44 = dcabl
in M4 mll ml12 ml3 ml4 m21 m22 m23 m24 m31 m32 m33 m34 m4l m42 m43 m44

210 class MV m v where

(""%7) ::m->v ->v
("*71) v > v -—>m

31

snowglobe Vector.hs

reflector :: Mm, Vv, MVmv) = v ->m
215 reflector v =1 ""="" (2 ™" (v "x"1 v))

instance MV M1l V1 where
Mim """+ VI v =Vl (m * v)
Vla "%«"1 VI b =M (a % b)
220
instance MV M2 V2 where
M2 mll ml2 m21 m22 ~"x~ V2 vl v2 =
V2 (mllxvl + ml2xv2)
(m21xvl + m22xv2)
225 V2 al a2 “x7! V2 bl b2 =
M2 (al * bl) (al * b2)
(a2 % bl) (a2 % b2)

instance MV M3 V3 where
230 M3 mll ml2 ml3 m21 m22 m23 m3l m32 m33 """ V3 vl v2 v3 =
V3 (mll*vl + ml2%v2 + ml3x%v3)
(m21xvl + m22%v2 + m23%v3)
(m31%vl + m32%v2 + m33%v3)
V3 al a2 a3 “x"! V3 bl b2 b3 =
235 M3 (al * bl) (al * b2) (al
(a2 % bl) (a2 % b2) (a2
(a3 % bl) (a3 % b2) (a3

b3)
b3)
b3)

* % ¥

instance MV M4 V4 where

240 M4 mll ml2 ml3 ml4 m21 m22 m23 m24 m3l m32 m33 m34 m4l m42 m43 m44 ~ "%~ V4 vl 7V
G v2 v3 v4 =

V4 (mllxvl 4+ ml2%v2 4+ ml3*xv3 + mldxv4)

(m21xvl + m22%v2 + m23%v3 + m24x*v4)

(m31xvl + m32xv2 + m33%v3 + m34xv4)

(m4lxvl + md2xv2 + md3+xv3 + mdd*v4)

245 V4 al a2 a3 a4 “x"! V4 bl b2 b3 b4 =

al % bl) b2) (al *x b3) b4)

b4)

b4)

)

* ¥ ¥ *x
* ¥ ¥ *

((al (al
(* bl) (a2) (* b3) (a2
(a3 % bl) (a3 b2) (a3 * b3) (a3
(x bl) (a4) (x b3) (a4 b4
250

cross4 :: V4 -> V4 —> V4 > V4

cross4d (V4 u0 ul u2 u3) (V4 v0 vl v2 v3) (V4 w0 wl w2 w3) =

let vw0l = vO
255 vw02 = vO0
vw03 = vO0
vwl2 = vl
vwld = vl
vw23 = v2
260 r0 = ul
rl = - u0
r2 = u0 vwl3
r3 = - ul vwl2
in V4 rO r1 r2 r3
265 -}
let mO0 = M3 ul u2 u3d vl v2 v3 wl w2 w3
ml = M3 u0 u2 u3 v0 v2 v3 w0 w2 w3
m2 = M3 u0 ul u3 v0 vl v3 w0 wl w3

wl - vl x
w2 — v2 %
w3 — v3 *x w0
w2 - v2
w3 - v3 *
w3 — v3 x w2
vw23
vw23

u3d
u3
u3
u2

vwl2
vw02
vw02
vw01

vwl3
vw03
vw03
vw02

EE S (O S SR R SR I

* ¥ ¥ %
* ¥ ¥ ¥

32

snowglobe Vector.hs

m3 = M3 u0 ul u2 v0 vl v2 w0 wl w2
270 in V4 (det m0) (-(det ml)) (det m2) (-(det m3))

33

