tilings

Claude Heiland-Allen

2011-2015



10

15

20

25

30

Contents

Data/Tiling.hs

.gitignore . . . .
LICENSE . ..
Setup.hs . . ..
tilings.cabal . .

N OOt W N

Data/Tiling/Class.hs . . . . .. ...

Data/Tiling/Quad.his . . . . . ...

1 Data/Tiling/Class.hs

{-# LANGUAGE DeriveDataTypeable #-}

{- |

Module : Data. Tiling . Class

Copyright : (c¢) Claude Heiland-Allen 2011
License : BSD3

Maintainer claude@mathr. co.uk

Stability : unstable

Portability : portable

Substitution tiling API.

-}

module Data

import Data
import Data

.Tiling . Class where

.Data (Data)
. Typeable (Typeable)

import Data.List (partition)

—— | Substitution tilings. Instances must obey the following laws:
- > parent root =— Nothing

- > all (== Just t) . map parent . children $ ¢

- > t ‘inside ¢ exterior t

- > t ‘encloses ‘ interior t

- > interior t ‘insideR ¢ exterior t

- >t ‘inside‘ r => t ‘overlaps‘ r

— >t ‘encloses‘ r =—=> t ‘overlaps‘ r

- >t ‘overlaps‘ r ==> not (t ‘outside‘ r)

- >t ‘encloses ‘ r & n >= 0 ==> not $ any (‘outside

——  Minimal complete definition: all except ’tile ’.
class Tiling t where
—— | The largest tile to start from.

(tile t r n)

N OO U N



35

40

45

50

55

60

65

70

75

80

85

tilings Data/Tiling/Class.hs
root ot
—— | The smaller children of a tile.
children :: t —> [t]
—— | The unique parent of a tile.
parent :: t —> Maybe t
—— | A rectangle that completely encloses the tile.
exterior :: t —> Rectangle
—— | A rectangle that is completely enclosed by the tile.
interior :: t -> Rectangle
—— | Test if a rectangle completely encloses the tile.
inside :: t => Rectangle —> Bool
—— | Test if a rectangle is completely enclosed by the tile.
encloses :: t —> Rectangle —> Bool
—— | Test if a rectangle is completely disjoint from the tile.
outside :: t -> Rectangle —> Bool
—— | Test if a rectangle has any overlap with the tile.
overlaps :: t —> Rectangle —> Bool
—-— | Generate a tiling that completely fills the given rectangle.
- Preconditions:
- > t ‘encloses ‘ r
- >n >= 0
tile :: t —> Rectangle —> Int -> [t]
tile = tileDefault

—— | Default implementation for ’tile ’.

tileDefault :: Tiling t = t —> Rectangle —> Int -> [t]

tileDefault t r n
| n >= 0 = uncurry (++) $ iterate step ([t],

[1) ' n

| otherwise = error ”Data. Tiling.Class. tileDefault: not (n >= 0)”

where
step (es, is) =
let is’ = concatMap children is
es’ = concatMap children es
(is’’, es’’) = partition (‘inside ‘ 1)
in (es’’, is’’7 4+ is7)

—— | An axis-aligned rectangle with ’Rational’

—— Invariant :

filter (‘overlaps‘ r) $§ es’

coordinates.

-— > westEdge r <= eastEdge r && southEdge r <= northEdge r

—— For substitution tilings that contain irrational lengths and/or scale

— factors , the intention is that the implementations of ’exterior
provide reasonably tight bounds, within a percent

—— and ’interior’

—— or two, say, while the data type maintains

I

full precision internally

- (perhaps using algebraic field extensions over ’'Rational’).
data Rectangle = Rectangle{ northEdge, southEdge, eastEdge, westEdge :: !v

 Rational }
deriving (Eq, Ord, Read, Show, Data, Typeable

)

—— | Create a valid rectangle, sorting the edges to meet the invariant.

rectangle :: Rational {- ~ x0 -} —> Rational {-
& —> Rational {- "~ yl1 -} —> Rectangle {-

x1 -} => Rational {- "~ y0 -} v
rectangle -}



tilings Data/Tiling.hs

rectangle x0 x1 y0 yl = Rectangle
90 { northEdge = y0 ‘max‘ yl, southEdge = y0 ‘min‘ yl
, eastEdge = x0 ‘max‘ x1, westEdge = x0 ‘min‘ x1

}

—— | Check if a rectangle is inside another rectangle. The comparison
95 —— is not strict , so that a rectangle is inside itself.
insideR :: Rectangle —> Rectangle —> Bool
insideR p ¢
= northEdge p <= northEdge q
&& southEdge p >= southEdge g
100 && eastEdge p <= eastEdge ¢
&& westEdge p >= westEdge ¢
—— | Check if a rectangle is disjoint from another rectangle. The comparison

—— is strict , so that neighbouring rectangles that share an edge will
— not be outside each other.

outsideR :: Rectangle —-> Rectangle —-> Bool

outsideR p q

105

= northEdge p < southEdge g
|| southEdge p > northEdge q
110 || eastEdge p < westEdge ¢
|| westEdge p > eastEdge q
—— | Check if a rectangle overlaps with another rectangle. The comparison
— is not strict , so that neighbouring rectangles that share an edge
115 — will overlap each other.
overlapsR :: Rectangle —> Rectangle —> Bool

overlapsR p q = not (p ‘outsideR‘ q)

2 Data/Tiling.hs

{- |

Module : Data. Tiling
Copyright : (c) Claude Heiland-Allen 2011
License : BSD3
5
Maintainer : claude@mathr.co.uk
Stability : unstable
Portability : portable
10 Substitution tilings. The term substitution , in connection with tilings ,

describes a simple but powerful method to produce tilings with many
interesting properties.

The main idea is to use a finite set of building blocks called prototiles,
15 an expanding linear map (the inflation factor), and a rule how to dissect
each scaled tile into copies of the original prototiles.

For some examples of substitution tilings , and a glossary of terminology,
see the /tilings encyclopedia/
20 at <http://tilings .math.uni-bielefeld .de/>
module Data. Tiling
( module Data. Tiling . Class
, module Data. Tiling .Quad
25 ) where



10

15

20

25

30

35

40

45

50

tilings Data/Tiling/Quad.hs

import Data. Tiling. Class
import Data. Tiling .Quad

3 Data/Tiling/Quad.hs

{-# LANGUAGE DeriveDataTypeable #-}

{- |

Module : Data. Tiling .Quad

Copyright : (c¢) Claude Heiland-Allen 2011
License : BSD3

Maintainer : claude@mathr.co.uk

Stability : unstable

Portability : portable

Simple substitution tiling with each square divided into four quadrants
(with no rotation).
-}
module Data. Tiling .Quad
( Quadrant(..), isNorth, isSouth, isWest, isEast, quadrants
, Quad(..), quadChild, quadParent, quadPath, quadFile
, module Data. Tiling . Class
) where

import Data.Data (Data)

import Data. Typeable (Typeable)

import Data.Bits (bit, shiftL, shiftR, testBit, (.|.))
import Data.List (unfoldr)

import Data.Ratio ((%))

import Data. Tiling. Class

-— | A square tile.
data Quad = Quad{ quadLevel :: !Int, quadWest, quadNorth :: !Integer }
deriving (Read, Show, Eq, Ord, Data, Typeable)

—— | Substitution tiling for square tiles.
instance Tiling Quad where
root = Quad 0 0 0O
children q = map (‘quadChild‘ ¢q) quadrants
parent q = snd ‘fmap‘ quadParent q
exterior (Quad 1 x y) =
let d = bit 1
in rectangle (x % d) ((x+ 1) %d) (y%d) ((y+1) %d)

interior = exterior

inside q r = exterior q ‘insideR ‘ r
encloses g r = r ‘insideR ‘¢ interior q
outside q r = exterior q ‘outsideR ‘ r
overlaps q r = exterior q ‘overlapsR‘ r

—— | Which quadrant.
data Quadrant = NorthWest | NorthEast | SouthWest | SouthEast
deriving (Read, Show, Eq, Ord, Enum, Bounded, Data, Typeable)

isNorth , isSouth, isWest, isEast :: Quadrant —> Bool
isEast ¢ = fromEnum ¢ ‘testBit ¢ 0



55

60

65

70

75

80

85

90

95

tilings .gitignore
isSouth ¢ = fromEnum c ‘testBit ¢ 1
isNorth = not . isSouth
isWest = not . isEast
-— | All quadrants.
quadrants :: [Quadrant]
quadrants = [minBound .. maxBound]
—— | The child tile at a given quadrant.
quadChild :: Quadrant —> Quad —> Quad
quadChild ¢ Quad{ quadLevel = 1, quadWest = x, quadNorth =y } = Quad

{ quadLevel =1 + 1

, quadWest = x ‘shiftL * 1 .|. (fromIntegral . fromEnum . isEast ) c

, quadNorth = y ‘shiftL ¢ 1 .|. (fromIntegral . fromEnum . isSouth) c
—— | The parent with quadrant information for the tile. Satisfies:
-— > quadParent (quadChild ¢ q) = Just (¢, q)
quadParent :: Quad —> Maybe (Quadrant, Quad)
quadParent Quad{ quadLevel = 1, quadWest = x, quadNorth =y }

| 1 >0 = Just

( toEnum (fromEnum (y ‘testBit‘ 0) ‘shiftL ‘ 1 .|. fromEnum (x ‘testBit‘ 0)v
S )
, Quad{ quadLevel = 1 - 1, quadWest = x ‘shiftR‘ 1, quadNorth = y ‘shiftR ‘v

!
)

| otherwise = Nothing
—— | The path from this tile to the root. Satisfies:
—— > foldr quadChild root (quadPath q) =— q

quadPath :: Quad —> [Quadrant ]
quadPath = unfoldr quadParent

—— | Suggested file system location for data pertaining to a ’Quad’.

quadFile :: Quad —> Maybe ([FilePath], FilePath)
quadFile q
| null cs = Nothing

| otherwise = Just (init cs, last cs)

where
—-— based on a suggestion from Robert Munafo <http://mrob.com>.
cs = chunk 2 . map unsafeName . chunk 2 . reverse . quadPath $ q
unsafeName :: [Quadrant] —> Char
unsafeName [c] = [’a’..’d’] !! (fromEnum c)
unsafeName [c,d] = [’e’.. t’] !! (fromEnum c¢ ‘shiftL ¢ 2 .|. fromEnum d)
unsafeName _ = error ”Data. Tiling.Quad.quadFile.unsafeName”
chunk :: Int -> [a] —> [[a]]
chunk _ [] = []
chunk n xs = let (ys, zs) = splitAt n xs in ys : chunk n zs

4 .gitignore

dist

5 LICENSE



10

15

20

25

30

10

15

tilings Setup.hs

Copyright (c¢)2011, Claude Heiland-Allen
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification , are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of Claude Heiland-Allen nor the names of other
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6 Setup.hs

import Distribution . Simple
main = defaultMain

7 tilings.cabal

Name: tilings
Version: 0.1
Synopsis: substitution tilings
Description:
Substitution tilings. The term substitution, in connection with tilings ,

describes a simple but powerful method to produce tilings with many
interesting properties.

The main idea is to use a finite set of building blocks called prototiles,
an expanding linear map (the inflation factor), and a rule how to dissect
each scaled tile into copies of the original prototiles.

For some examples of substitution tilings , and a glossary of terminology,
see the /tilings encyclopedia/
at <http://tilings .math.uni—bielefeld .de/>

Homepage : http://code.mathr.co.uk/tilings
License: BSD3
License—file: LICENSE



20

25

30

tilings

tilings.cabal

Author:

Maintainer:
Category :
Build-type:

Cabal-version :

Library

Exposed-modules:

Build -depends:
GHC-options:

Claude Heiland -Allen
claude@mathr.co.uk

Math
Simple
>=1.2

Data. Tiling , Data. Tiling.Class, Data. Tiling.Quad
base >= 4 && < 6

—-Wall —-fno-warn-duplicate —exports



