wedged

Claude Heiland-Allen

2013-2019

Contents

LItignore . . Lo L e e e
LICENSE.md e

wedged.cabal L

10

15

20

25

30

1
2
3 Setup.his . . . o
4
5

Wedged.hs o o e

1 .gitignore

dist
dist —newstyle

2 LICENSE.md

Free Art License 1.3 (FAL 1.3)
Preamble

The Free Art License grants the right to freely copy, distribute , and
transform creative works without infringing the author’s rights.

The Free Art License recognizes and protects these rights. Their
implementation has been reformulated in order to allow everyone to use
creations of the human mind in a creative manner, regardless of their
types and ways of expression.

While the public’s access to creations of the human mind usually is
restricted by the implementation of copyright law, it is favoured by the
Free Art License. This license intends to allow the use of a work’s
resources; to establish new conditions for creating in order to increase
creation opportunities. The Free Art License grants the right to use a

y

work, and acknowledges the right holder’s and the user’s rights and
responsibility .

The invention and development of digital technologies, Internet and Free
Software have changed creation methods: creations of the human mind can
obviously be distributed , exchanged, and transformed. They allow to
produce common works to which everyone can contribute to the benefit of
all.

The main rationale for this Free Art License is to promote and protect
these creations of the human mind according to the principles of
copyleft: freedom to use, copy, distribute, transform, and prohibition
of exclusive appropriation.

co O O NN

35

40

45

50

55

60

65

70

75

80

85

wedged LICENSE.md

Definitions

sworkx either means the initial work, the subsequent works or the
common work as defined hereafter:

xcommon workx means a work composed of the initial work and all
subsequent contributions to it (originals and copies). The initial
author is the one who, by choosing this license, defines the conditions
under which contributions are made.

x*Initial workx means the work created by the initiator of the common
work (as defined above), the copies of which can be modified by whoever
wants to

xSubsequent worksx means the contributions made by authors who
participate in the evolution of the common work by exercising the rights
to reproduce, distribute , and modify that are granted by the license.

xOriginals* (sources or resources of the work) means all copies of
either the initial work or any subsequent work mentioning a date and
used by their author(s) as references for any subsequent updates,
interpretations , copies or reproductions.

x*Copy* means any reproduction of an original as defined by this
license .

#4 1. OBJECT

The aim of this license is to define the conditions under which one can
use this work freely.

44 2. SCOPE

This work is subject to copyright law. Through this license its author
specifies the extent to which you can copy, distribute, and modify it.

2.1 FREEDOM TO COPY (OR TO MAKE REPRODUCTIONS)

You have the right to copy this work for yourself, your friends or any
other person, whatever the technique used.

2.2 FREEDOM TO DISTRIBUTE, TO PERFORM IN PUBLIC

You have the right to distribute copies of this work; whether modified
or not, whatever the medium and the place, with or without any charge,
provided that you:

— attach this license without any modification to the copies of this work
or indicate precisely where the license can be found,

- specify to the recipient the names of the author(s) of the originals,
including yours if you have modified the work,

- specify to the recipient where to access the originals (either initial
or subsequent).

The authors of the originals may, if they wish to, give you the right
to distribute the originals under the same conditions as the copies.

90

95

100

105

110

115

120

125

130

135

140

wedged LICENSE.md

##4 2.3 FREEDOM TO MODIFY

You have the right to modify copies of the originals (whether initial
or subsequent) provided you comply with the following conditions:

— all conditions in article 2.2 above, if you distribute modified
copies;

— indicate that the work has been modified and, if it is possible, what
kind of modifications have been made;

— distribute the subsequent work under the same license or any compatible
license.

The author(s) of the original work may give you the right to modify it
under the same conditions as the copies.

3. RELATED RIGHTS

Activities giving rise to author’s rights and related rights shall not
challenge the rights granted by this license.

For example, this is the reason why performances must be subject to the
same license or a compatible license. Similarly , integrating the work in
a database, a compilation or an anthology shall not prevent anyone from
using the work under the same conditions as those defined in this
license.

4. INCORPORATION OF THE WORK

Incorporating this work into a larger work that is not subject to the
Free Art License shall not challenge the rights granted by this

license.

If the work can no longer be accessed apart from the larger work in
which it is incorporated, then incorporation shall only be allowed under
the condition that the larger work is subject either to the Free Art
License or a compatible license.

5. COMPATIBILITY
A license is compatible with the Free Art License provided:

— it gives the right to copy, distribute, and modify copies of the work
including for commercial purposes and without any other restrictions
than those required by the respect of the other compatibility criteria;

— it ensures proper attribution of the work to its authors and access to
previous versions of the work when possible;

- it recognizes the Free Art License as compatible (reciprocity);

— it requires that changes made to the work be subject to the same
license or to a license which also meets these compatibility criteria.

6. YOUR INTELLECTUAL RIGHTS

This license does not aim at denying your author’s rights in your
contribution or any related right. By choosing to contribute to the
development of this common work, you only agree to grant others the same
rights with regard to your contribution as those you were granted by
this license. Conferring these rights does not mean you have to give up
your intellectual rights.

145

150

155

160

165

170

175

180

185

190

195

200

wedged LICENSE.md

#4 7. YOUR RESPONSIBILITIES

The freedom to use the work as defined by the Free Art License (right
to copy, distribute , modify) implies that everyone is responsible for
their own actions.

#4# 8. DURATION OF THE LICENSE

This license takes effect as of your acceptance of its terms. The act
of copying, distributing , or modifying the work constitutes a tacit
agreement. This license will remain in effect for as long as the
copyright which is attached to the work. If you do not respect the terms
of this license, you automatically lose the rights that it confers.

If the legal status or legislation to which you are subject makes it
impossible for you to respect the terms of this license, you may not
make use of the rights which it confers.

9. VARIOUS VERSIONS OF THE LICENSE

This license may undergo periodic modifications to incorporate
improvements by its authors (instigators of the Copyleft Attitude
movement) by way of new, numbered versions.

You will always have the choice of accepting the terms contained in the
version under which the copy of the work was distributed to you, or
alternatively , to use the provisions of one of the subsequent versions.

44 10. SUB-LICENSING

Sub-licenses are not authorized by this license. Any person wishing to
make use of the rights that it confers will be directly bound to the
authors of the common work.

#4# 11. LEGAL FRAMEWORK

This license is written with respect to both French law and the Berne
Convention for the Protection of Literary and Artistic Works.

USER GUIDE
How to use the Free Art License?

To benefit from the Free Art License, you only need to mention the
following elements on your work:

[Name of the author, title, date of the work. When applicable
names of authors of the common work and, if possible, where to
find the originals].

Copyleft: This is a free work, you can copy, distribute , and
modify it under the terms of the Free Art License
<http://artlibre.org/licence/lal/en/>

Why to use the Free Art License?

1. To give the greatest number of people access to your work.
2. To allow it to be distributed freely.

205

210

215

220

225

230

235

240

wedged

Setup.hs

3. To allow it to evolve by allowing its copy, distribution , and
transformation by others.

4. So that you benefit from the resources of a work when it is under the
Free Art License: to be able to copy, distribute or transform it
freely .

5. But also, because the Free Art License offers a legal framework to
disallow any misappropriation. It is forbidden to take hold of your work
and bypass the creative process for one’s exclusive possession.

When to use the Free Art License?

Any time you want to benefit and make others benefit from the right to
copy, distribute and transform creative works without any exclusive
appropriation, you should use the Free Art License. You can for example
use it for scientific, artistic or educational projects.

What kinds of works can be subject to the Free Art License?

The Free Art License can be applied to digital as well as physical
works .

You can choose to apply the Free Art License on any text, picture,
sound, gesture, or whatever sort of stuff on which you have sufficient
author’s rights.

Historical background of this license:

It is the result of observing, using and creating digital technologies,
free software, the Internet and art. It arose from the Copyleft
Attitude meetings which took place in Paris in 2000. For the first
time, these meetings brought together members of the Free Software
community, artists , and members of the art world. The goal was to adapt
the principles of Copyleft and free software to all sorts of creations.

<http://www. artlibre .org>
Copyleft Attitude, 2007.

You can make reproductions and distribute this license verbatim
(without any changes).

Translation: Jonathan Clarke, Benjamin Jean, Griselda Jung, Fanny Mourguet ,
Antoine Pitrou. Thanks to <http://framalang.org>

3 Setup.hs

import Distribution.Simple
main = defaultMain

4 wedged.cabal

name : wedged

version: 3

synopsis: Wedged postcard generator.
license: OtherLicense

license —file : LICENSE .md

author: Claude Heiland -Allen

10

15

20

25

30

35

40

45

50

55

60

wedged wedged.cabal

maintainer: claude@mathr. co.uk

copyright: (C) 2013,2015,2016,2018 Claude Heiland-Allen
homepage: https://mathr.co.uk/wedged

category : Demo

build -type: Simple

cabal-version: >=1.10

description:
Wedged (C) 2013,2015,2016,2018 Claude Heiland-Allen.

Copyleft: This is a free work, you can copy, distribute , and
modify it under the terms of the Free Art License
<http://artlibre.org/licence/lal/en/>.

Usage:

mkdir 7x5

cd 7x5

wedged 13 9 0.5 72
cd

VVVYV-

mkdir 12x8

cd 12x8

wedged 14 9 0.8 72
cd

VVVYV-

Output:
189 EPS files in the 7x5 dir, totalling 25 MB, runtime 3ml5s.
115 EPS files in the 12x8 dir, totalling 17 MB, runtime 6m25s.

Run time measured using a single core of a 4.3GHz AMD Ryzen 7 2700X
Eight —Core Processor.

Information:
Version 0 worked with GHC 7.8 and Diagrams 1.2 with the Cairo backend.

Version 1 was updated to work with GHC 8.0 and Diagrams 1.3 with the
Cairo backend.

Version 2 was updated to work with GHC 8.4 and Diagrams 1.4 with the
Rasterific backend.

Version 3 is updated to work with GHC 8.6 and Diagrams 1.4 with the
Postscript backend.

executable wedged

main-is : Wedged . hs

build ~depends: base >=4.7 & <4.14,
MonadRandom >=0.1 && <0.6,
array >=0.5 & <0.6,
containers >=0.5 && <0.7,
strict >=0.3 & <0.4,
colour >=23 && <2.4,
diagrams-1lib >=1.4 && <1.5,

65

70

75

10

15

20

25

30

35

wedged Wedged.hs

diagrams-postscript >=14 && <1.5

default —-language: Haskell2010

other—-extensions: FlexibleContexts
source—-repository head

type: git

location: https://code.mathr.co.uk/wedged. git
source—repository this

type: git

location: https://code.mathr.co.uk/wedged. git

tag: v3

5 Wedged.hs

—— Wedged (c¢) 2013,2015,2018 Claude Heiland-Allen <claude@mathr.co.uk> <https:// v
& mathr.co.uk>

—— Copyleft: This is a free work, you can copy, distribute, and modify it under

—— the terms of the Free Art License <http://artlibre.org/licence/lal/en/>

{-# LANGUAGE FlexibleContexts #-}

module Main (main) where

import Control . Monad (guard, liftM2)
import Control.Monad.Random (MonadRandom, runRand, getRandomR, »
& newStdGen, StdGen)

import Data.Complex (Complex ((:4)), magnitude, mkPolar)
import Data.Function (on)
import Data. List (group, groupBy, sortBy, nub, nubBy)
import Data . Maybe (mapMaybe, fromJust, listToMaybe)
import Data.Ord (comparing)
import Data. Strict . Tuple (Pair ((:!:)))
import System . Environment (getArgs, withArgs)
import System . Exit (exitFailure)
import System .10 (hPutStrLn, stderr)
import Data. Array . Unboxed (UArray, bounds, inRange, ixmap, indices)
import qualified Data.Array.Unboxed as U
import Data.Map. Strict (Map)
import qualified Data.Map. Strict as M
import Diagrams. Prelude

hiding (inside, magnitude, appends, clamp, Colour, translate, place, render, ev

S

import
import
import

type N
type R
type C

data Colour = Red |

D, N, P, unP, Empty,
qualified Diagrams.Prelude
Data. Colour .SRGB

normalize)

as D
(sRGB24)

Diagrams. Backend. Postscript .CmdLine (B, defaultMain)

= Int
= Double
= Complex R

Yellow |

deriving (Eq, Ord, Show, Read)
type Label = Int
type Depth = Int
type Size = Pair Int Int

Green | Cyan | Magenta

40

45

50

55

60

65

70

75

80

85

90

95

wedged

UArray Size Int

type Coord = Pair Int Int
type Grid =
grid :: [[Cell]]

grid css = U.array

—~

wl = length

21

cs)
c)

—> Grid

((0:1:0)
X) ,munge c)
<- [0..h1] ‘zip*®
<- [0..wl] ‘zip‘

hl = length css

(head css) -

elems :: Grid —> [Cell]
elems = map unmunge

(') :: Grid —> Coord —> Cell
a ! i = unmunge (a U.! 1)

(

assocs

(//) :: Grid —> |
/) a=(U.//) a

(Coord,

Cell)]

,(hl:1:wl))

CSS
CS

1
1

. U.elems

-> Grid

. map (fmap munge)

Grid —> [(Coord,

assocs = map (fmap unmunge)

data Cell = Empty |
deriving (Eq, Ord, Show)

munge :: Cell

munge Empty = -1

munge Blocked
munge (Filled

munge
munge

munge

unmunge

unmunge (-1
unmunge (-2
unmunge n =
-
-
1
1)
1

)

2)
3)
;o 4) -
5) >
6) —>
—> €erro

isEmpty

isEmpty Empty = True

-2
Re

d)

1
(1 Yellow)
(Filled 1 Green)
munge (Filled 1
(Filled 1

Cyan)
Magenta) = 6

Blocked

—-> Label

=5 4+

Label —> Cell

) = Empty

)

= Blocked
‘divMod ¢

case n
Filled
Filled
Filled
Filled
Filled

1

1
1
1
1

r $ “unmunge:

Red
Yellow
Green
Cyan
Magenta

Cell —> Bool

isEmpty _ = False

isBlocked

isFilled

Cell => Bool
isBlocked Blocked
isBlocked _ = False

= True

Cell —> Bool

Cell)]

. U.assocs

| Filled

=2 4+ 16 % 1
=3+ 16 x 1
=4 4+ 16 x 1

16 x 1
+ 16 * 1

16 of

? ++ show (n, x)

100

105

110

115

120

125

130

135

140

145

150

wedged

Wedged.hs

isFilled Filled{} = True

isFilled _ = False
colour :: Cell —> Maybe Colour
colour (Filled - ¢) = Just ¢
colour _ = Nothing
label :: Cell —=> Maybe Label
label (Filled 1 _) = Just 1
label _ = Nothing
unsafeColour :: Cell => Colour
unsafeColour (Filled - ¢) = ¢
unsafeColour _ = error ”unsafeColour”
data Piece = P{ pid :: !Int, unP :: !Grid } deriving (Show)
instance Eq Piece where p q = pid p = pid q
instance Ord Piece where p ‘compare‘ q = pid p ‘compare‘ pid q
pieceColour :: Piece —> Colour
pieceColour = unsafeColour . (! (0 :!: 0)) . unP
colours :: [Colour]
colours = [Red, Yellow, Magenta, Green, Cyan]
rawPieces :: [Piece]
rawPieces
= mapMaybe (fmap snd . normalize isFilled . P 0 . grid)
zipWith ccells colours . paras . lines $ pieceData
ccells :: Colour —> [String] —> [[Cell]]

ccells ¢ hss = map (map (cell ¢)) hss

pieceData :: String

pieceData = 7sx\nsx\n\nx——\n#sxx\n\n—*—\ns+x\n\n—sk\nsx—\n\ns*s*+x\n”
cell :: Colour —> Char —> Cell

cell ¢ '+’ = Filled 0 ¢

cell _ "=’ = Empty

cell _ _ = error "cell”

paras :: [String] -> [[String]]

paras [] = []

paras ls = case break null ls of

(p, Is’) => p : paras (drop 1 ls’)

orientations :: [Piece —> Piece]
orientations =

[id

, reverse’ . transpose’

, mapReverse’ . transpose’

, reverse’ . mapReverse’

, reverse’

, mapReverse’

, transpose’

, reverse’ . mapReverse’ . transpose’

10

wedged Wedged.hs

155 onP :: (Grid —> Grid) -> Piece —> Piece
onP f (Pig)=Pi (fg)

reverse’ :: Piece —> Piece
reverse ' = onP vflip
160
mapReverse’ :: Piece -> Piece
mapReverse’ = onP hflip
transpose’ Piece —> Piece
165 transpose’ = onP dflip
vflip :: Grid -> Grid
vilip g =
let bs@((y0:!:_),(hl:!:_)) = bounds g
170 f (y :!: x) = (hl - (y - y0) :!: x)
in ixmap bs f g
hflip :: Grid -> Grid
hflip g =
175 let bs@((- :!: x0),(- :!: wl)) = bounds g
f(y ! x) = (y !+ wl - (x - x0))

in ixmap bs f g

dflip :: Grid -> Grid
180 dflip g =

let ((y0 :!: x0),(hl :!: wl)) = bounds g
f(y :!: x) = (x :!:y)
in ixmap ((x0 :!: y0),(wl :!:hl)) f g
185 pieces :: [Piece]
pieces = zipWith P [0..] . nub . map unP . liftM2 o rawPieces $ orientations
where o q@(P _ _) f = snd . fromJust . normalize isFilled $§ f q
data Board = B
190 { unB :: !Grid
, topLeft_isEmpty :: !(Maybe Coord)
, colour_counts :: !(Map Colour Int)
}
deriving (Eq, Ord, Show)
195
mkB :: Grid -> Board
mkB g = B
{ wB =g
, topLeft_isEmpty = topLeft isEmpty g
200 , colour_counts = M. fromList (colours ‘zip ‘¢ repeat 0)
}
rectangle :: Size -> Board
rectangle (h :!: w) = mkB $ U.listArray ((0 :!: 0),(h-1 :!: w-1)) (repeat (-1))
205
place :: Coord —> Label —> Piece —> Board -> [Board]
place yx 1 piece board
| fits yx piece board = [blit yx 1 piece board]
| otherwise = []
210

11

wedged Wedged.hs

(==>) :: Bool —> Bool —> Bool
x => y = if x then y else True
infix 1 =—>

215 (=/>) :: Bool —> Bool -> Bool

x =/> y = if x then y else False
infix 1 =/>

surround :: Piece -> [Coord]
220 surround = (surrounds M.!)
surrounds :: Map Piece [Coord]
surrounds = M. fromList [(p, surround’ p) | p <- pieces]
225 surround’ :: Piece —> [Coord]
surround’ (P _ piece) = nub
[vu
| yx@(y :!: x) <- indices piece
, isFilled (piece ! yx)
230 ,ovu <= [(y-1 :!l: x),(y+1 12 x), (y :!: x=1), (y :!: x+1)]

, inRange (bounds piece) vu => isEmpty (piece ! vu)

]

fits :: Coord —> Piece -> Board -> Bool
235 fits (y :!: x) pQ(P _ piece) (B board _ cc)
= inside bp bb &&
cc M.! pc < hi &

and [isEmpty (board ! (v+y :!: utx))
| vu@Q(v :!: u) <- indices piece
240 , isFilled (piece ! vu) | &
all distinct
[board ! yx
| (v :!:t u) <- surround p
, let yx = (v+y ! utx)
245 , inRange bb yx | &
(pc Cyan => case bp of
((0:1:0) ,(3:!:0)) —> not (blocked (y - 1 :!: x) || blocked (y + 4 :!: x))
((0:1:0) ,(0:!:3)) —> not (blocked (y :!: x - 1) || blocked (y :!: x + 4))
- —> error 7fits?”)
250 where
bb@((y0 :!: x0), (hl :!: wl)) = bounds board
bp = bounds piece
h = hl - y0 + 1
w=wl - x0 + 1
255 n :: Double
n = fromIntegral (h * (w - 1)) / fromIntegral (4 * length colours)
md = 4 % round n
hi = md + 4
pc = pieceColour p
260 distinct = (Just pc /=) . colour
blocked yx = inRange bb yx =/> isBlocked (board ! yx)
inside ((ly :!: 1x),(hy :!: hx)) ((lv :!: lu),(hv :!: hu))
= lv <= (ly+y) && (hy+y) <= hv && lu <= (lx+x) && (hx+x) <= hu
265 blit :: Coord —> Label -> Piece —> Board -> Board

blit (y :!: x) 1 p@Q(P _ piece) (B board (Just (ty :!: tx)) cc) =
B board’ (topLeftFrom ty tx isEmpty board’) cc’

12

270

275

280

285

290

295

300

305

310

315

320

Wedged.hs

wedged
where
cc’ =M. adjust (4 +) (pieceColour p) cc
board’ = board // [(yx, blitl
| vu@(v
S)
J
blit - - _ _ = error ”blit”
blitl :: Label —> Cell —> Cell —> Cell

blitl 1 (Filled - c¢) Empty = Filled

blitl _ Empty x = x

1

C

1 (piece
:1: u) <- indices piece,

I vu)

blitl _ x y = error $ ”blitl” 44 show (x, y)

topLeft
topLeft p a = listToMaybe [1 |

topLeftFrom
topLeftFrom ty tx p a = go ty tx
where
((- :!: x0),(h0 :!: w0)) = bounds a
go y X

y > h0 = Nothing
x>wl=g¢go (y+ 1) x0
p (a ! yx) = Just yx

(Cell => Bool) -> Grid -> Maybe Coord

i <- indices a, p $ a ! 1]

otherwise = go y (x + 1)

x)

|
|
|
|
where yx = (y :!:

normalize (Cell —> Bool) —>
normalize p (P i piece) = do
(y :!: x) <— topLeft p piece
return ((y :!: x), translate (-y :!: -x)
translate Coord —> Piece -> Piece
translate (y :!: x) (P i g) =P i (ixmap bs (\(v
where
((y0 :!: x0),(hl :!: wl)) = bounds g
bs = ((y0 +y :!: x0 + x), (hl +y :!:
fill :: Depth —> [Piece] —> Board —> [Board]

fill 0 - board = do
guard $ colourCounts board
guard $ lineLengths board
return board

fill d piecesm board = do

Just yx <- return $ topLeft_isEmpty board

piece <- piecesm

Int —> Int —> (Cell —> Bool) —> Grid -> Maybe Coord

Piece —> Maybe (Coord, Piece)

board’ <- place yx (d - 1) piece board

guard $ diverse board’
fill (d - 1) piecesm board’

colourCounts Board —> Bool

(P i

piece))

lru) > (v -y

wl + x))

colourCounts b = all (lo <=) c¢s && any (== md) cs

where

cs = M.elems (colour_counts b)

((y0 :!: x0), (hl :!: wl)) = bounds (unB b)

h=hl - y0 + 1
w=wl - x0 + 1

(board ! yx))
let yx = (y + v

X + uv/

13

325

330

335

340

345

350

355

360

365

370

375

wedged Wedged.hs

n :: Double
n = fromIntegral (h * (w - 1)) / fromIntegral (4 % length colours)
lo =md - 4

md = 4 * round n

lineLengths :: Board —> Bool
lineLengths (B g - _-) = all (<= 1) . concatMap (map length . group) $ hs ++ vs
where
hs = [g! (y !t x) =g ! (y+1 :!: x) | x <= [x0..wl]] | y <= [y0 .. hlv
o -1]
vs = [[g! (y :!': x) =g ! (y :!: x+1) | y <~ [y0..h1]] | x <= [x0 .. wlv
o1
((y0o :!: x0), (hl :!: wl)) = bounds g
w=wl - x0 + 1
l =w - 2

depth :: Board —> Maybe Depth
depth g
| 0 = mn ‘mod‘ 4 = Just (n ‘div‘ 4)
| otherwise = Nothing
where
n = length . filter isEmpty . elems . unB $§ g

packings :: [Piece] —> Board -> [Board]
packings piecesm board = maybe [] (\d —> fill d piecesm board) (depth board)

blockings :: Board —> [Board]
blockings (B board - _) =
blockings’> (x0 - 200) (x0 - 100) y0 mO board
where
((y0o :!: x0), (hl :!: wl)) = bounds board
h=hl - yO + 1
w=wl - x0 + 1

m0 = M. fromList [(x, n) | x <= [x0 .. wl]]
n= ((h-1) ‘div w) + 1
blockings’ x’’ x> ym b

(

| ¥y > hl = if all (< n) (M.elems m) then return (mkB b) else []
| otherwise = do
let a x = abs (x — x’) > 2 && abs (x - x’7)
x <— M.keys $ M. filterWithKey (\x n’ -> a x
let b> =b // [((y:!:x), Blocked)]
m’ = M. adjust (subtract 1) x m

blockings’ x’ x (y + 1) m’ b’

> 2
& n’ > 0) m

diverse :: Board —> Bool
diverse (B b k _) = case k of
Nothing -> d (row hl) && all d cols

Just (ty :!: _) | ty > y0 —> d (row (ty — 1))
- —> True
where
row yl = [colour $ b ! (y1 :!: x) | x <= [x0 .. wl]]
cols = [[colour $ b ! (y :!: x) | y < [y0 .. hl]] | x <= [x0 .. wl]]
d = (5 <=) . length . nub
((y0 :!: x0), (hl :!: wl)) = bounds b

main :: 10 ()
main = do

14

wedged Wedged.hs

args <- getArgs
380 case args of
[sh,sw,ss,sd] —> do
h <- readlIO sh
w <- readlO sw
s <- readlO ss
385 d <- readlO sd
main’ (s * d) (h :!: w)
- —> hPutStrLn stderr ”usage: /path/to/wedged heightInCells widthInCells v
& cellSizelnches dotsPerInch” >> exitFailure

main’ :: Double -> Size -> 10 ()
390 main’ cellSize sQ(y :!: x)
= mapM. (uncurry (putDiagram w h)) . zip [0..] . map unB
concatMap (nubBy (equivalentBy ((==) ‘on‘ colour)) . packings pieces)
nubBy equivalent . blockings . rectangle
$ s
395 where

w = round $ fromIntegral (x + 1) * cellSize
h = round $ fromlIntegral (y + 1) x cellSize

equivalent :: Board -> Board -> Bool
400 equivalent = equivalentBy (==)

equivalentBy :: (Cell —> Cell —> Bool) -> Board -> Board -> Bool
equivalentBy ceq (Ba - _) (Bb . _) =
a ‘eq‘ b || a ‘eq‘ vilip b || a ‘eq‘ hflip b || a ‘eq‘ hflip (vflip b)
405 where

eq p q = bounds p = bounds q && and (zipWith ceq (elems p) (elems q))
putDiagram :: Int -> Int -> Int -> Grid —> IO ()
putDiagram w h n g = do
410 withArgs [”-w”, show w, "-h”, show h, "-0”, show3 n ++ ”.eps”] $§ do
defaultMain . fst . render g =<< newStdGen
where
show3d i

| i < 0 = show i
415 | i < 10 = 700" ++ show i
| i < 100 = ”0” 4+ show i
| otherwise = show i

render :: Grid —> StdGen -> (Diagram B, StdGen)
420 render g = runRand $ do
cs <— mapM renderCells $§ pieceCells g
return $ withEnvelope’ e (mconcat cs ‘atop‘ (e # lc white # fc white)) # »
& centerXY
where
e = fromVertices [p2(fromIntegral $§ xlo-1,fromIntegral $§ ylo-1), p2(v¥
& fromlIntegral $ xlo-1,fromIntegral $ yhi+1), p2(fromIntegral $ xhi+1,v
& fromlIntegral $ yhi+1), p2(fromIntegral $ xhi+1,fromIntegral $§ ylo-1)]~
& # closeTrail # (‘at‘ p2(fromIntegral$xlo -1,fromIntegral$ylo-1)) # v
& stroke
425 withEnvelope’ a b = withEnvelope (a ‘asTypeOf‘ b) b
((ylo:!:xlo),(yhi:!:xhi)) = bounds g

pieceCells :: Grid —> [[(Coord, Cell)]]
pieceCells

15

wedged Wedged.hs

430 = map (sortBy (comparing fst))
groupBy ((==) ‘on‘¢ (label . snd))
sortBy (comparing (label . snd))

assocs
435 renderCells :: (Functor m, MonadRandom m) => [(Coord, Cell)] —> m (Diagram B)
renderCells ((j :!: i, Filled - Red):_) =
(draw True (2" wdepth) (rgb Red) . (:[])) ‘fmap‘ appendsM [w a b, wb ¢, w cv
G d, wd a]
where
wdepth :: N
440 wdepth = 4
w = wobble wdepth
a = fromIntegral i :4+ fromlIntegral j
b = fromIntegral i :+ fromIntegral (j + 1)
¢ = fromIntegral (i + 1) :+ fromlIntegral (j + 1)
445 d = fromIntegral (i + 1) :+ fromIntegral j
renderCells [(jO:!:i0, Filled _ Yellow) ,(jl:!:i1,_),(j2:!:i2,_),(j3:1:13,.)] =
(draw False (2" wdepth) (rgb Yellow) . (:[])) ‘fmap‘ appendsM ws
where
wdepth :: N
450 wdepth = 4
w = wobble wdepth
a = fromIntegral i0 :4+ fromlIntegral jO
b = fromIntegral il :4+ fromIntegral j1
¢ = fromlIntegral i2 :4+ fromIntegral j2
455 d = fromIntegral i3 :+ fromIntegral j3
ws = case (jl - jo, il - i0, j2 - jO, i2 - i0, j3 - jO, i3 - i0) of
(0, 1, 0, 2, 1, 2) > {- -—, -} [wab,wbec, wecd]
(1, 0, 2,-1, 2, 0) > {- | -} [wab, wbd, wd ¢]
(1, 0, 1, 1, 1, 2) > {- '—— -} [wab,wbec, wecd]
460 (0, 1, 1, 0, 2, 0) => {- |’ -} [wba, wac, wed]
(0, 1, 0, 2, 1, 0) > |- ,—— -} [wda, wab, wb c]
(0, 1, 1, 1, 2, 1) > {- | -} [wab,wbec, wecd]
(1,-2, 1,-1, 1, 0) > {- -= -} [wbec,wed, wda]
(1, 0, 2, 0, 2, 1) > |- |, -} [wab, wbc, wecd]
465 x —> error $ "yellow” ++ show x
renderCells [(jO:!:i0, Filled _ Green) ,(jl:!:i1,_),(j2:!:i2,_),(j3:1:i3,_)] =
(draw False (2" wdepth) (rgb Green) . (:[])) ‘fmap‘ appendsM ws
where
wdepth :: N
470 wdepth = 4
w = wobble wdepth
a = fromIntegral i0 :4+ fromlIntegral jO
b = fromIntegral il :4+ fromIntegral j1
¢ = fromIntegral i2 :4+ fromIntegral j2
475 d = fromlIntegral i3 :+ fromlIntegral j3
ws = case (jl - jO, il — i0, j2 - jO, i2 - i0, j3 - jO, i3 - i0) of
(0, 1, 1,-1, 1, 0) => {- _|’ -} [wed,wda, wab]
(0, 1, 1, 1, 1, 2) > {- |- -} [wab, wbc, wed]
(r, 0, 1, 1, 2, 1) > |- i -} [wab, wbc, wecd]
480 (1,-1, 1, 0, 2,-1) => {-)’ -} [wac, web, wbd]

x —> error $ ”green” ++ show x
renderCells [(jO:!:10, Filled - Cyan) ,(jl:!:il,_),(j2:':12,_),(j3:1:13,.)] =
(draw False (2" wdepth) (rgb Cyan) . (:[])) ‘fmap‘ appendsM [w a b, wb ¢, wv
G cd]
where

16

wedged Wedged.hs

485 wdepth :: N
wdepth = 4
w = wobble wdepth
a = fromIntegral i0 :4+ fromIntegral jO
b = fromIntegral il :4+ fromlIntegral jl1
490 ¢ = fromlIntegral i2 :4+ fromlIntegral j2
d = fromlIntegral i3 :+ fromlIntegral j3
renderCells [(jO:!:i0, Filled _ Magenta) ,(jl:!:i1,_),(j2:!:i2,_),(j3:!:13,.)] =
draw False (2" wdepth) (rgb Magenta) ‘fmap‘ mapM appendsM wss
where
495 wdepth :: N
wdepth = 4
w = wobble wdepth
a = fromIntegral i0 :4+ fromlIntegral jO
b = fromlIntegral il :+ fromlIntegral jl1
500 ¢ = fromIntegral i2 :4+ fromIntegral j2
d = fromIntegral i3 :+ fromlIntegral j3
wss = case (jl1 — jO, il - i0, j2 - jO, i2 - i0, j3 - jO, i3 - i0) of
(1,-1, 1, 0, 1, 1) > {- _|- -} [wac], [wbec, wecd]]
(0, 1, 0, 2, 1, 1) => {- -I- -} [[wbd], [wab, wbec]]
505 (r, 0, 1, 1, 2, 0) > {- |- -+ [[wbc], [Wwab, wbd]]
(1,-1, 1, 0, 2, 0) > {- - -}l [wbc], [wac, wecd]]
x —=> error $ ”magenta” ++ show x
renderCells _ = return mempty
510 perturbMidpoint :: MonadRandom m => C -> C —> m C
perturbMidpoint p q = do
let m0 = (p +q) / 2
rl = magnitude (p - q) / 16
t <- getRandomR (-pi, pi)
515 r <- getRandomR (0, rl)
return $! m0 + mkPolar r ¢t
append :: (R—>1t) > (R->t) >R >t
append f g t
520 | t < 0.5 =1 8! 2 % ¢
| otherwise = g $! 2 % t - 1
appends :: [(R->t)] >R >t
appends fs t = fs !! ti § tx
525 where
1 = length fs
t’ =t x fromIntegral 1
ti = clamp (floor t’) 0 (1 - 1)
tx = t’ - fromIntegral ti
530
appendsM :: (Functor m, Monad m) = [m (R -=> t)] -> m (R -> t)

appendsM fs = appends ‘fmap‘ sequence fs

wobble :: MonadRandom m = N -> C -=> C -=> m (R -> C)
535 wobble 0 p q = return $ lint p q
wobble n p q = do
r <- perturbMidpoint p q
pr <- wobble (n - 1) pr
rq <- wobble (n - 1) r q
540 return $§ pr ‘append‘ rq

17

545

550

555

560

565

wedged

Wedged.hs

lint :: C->C->R -> C
= cC

lint p q t (1 —t) * p+ct *x q where ¢ r
clamp :: Ord t =t > t >t >t
clamp x lo hi = lo ‘max‘ x ‘min‘ hi

draw :: Bool => N —> D.Colour R —=> [(R —> C)] —> Diagram B
draw ¢l m ¢ fs = (plot 0.2 # lc ¢ ‘atop‘ plot 0.3 # lc black) # lineCap »

& LineCapRound # lineJoin LineJoinRound

where m’ :: R

m’ =1 / fromIntegral m

ps :: [Path V2 R]

ps = [cubicSpline cl
[p2(x,y)
| i <= [0 .. if ¢l then m - 1 else m]
, let t = fromIntegral i * m’
, let xi+y = f ¢
] | £ <= fs]

plot k = strokePath (mconcat ps) # lwL

rgb :: Colour —> D.Colour R

rgb Red = sRGB24 205 63 125
rgb Yellow = sRGB24 213 135 54
rgb Green = sRGB24 58 110 70
rgb Cyan = sRGB24 56 138 170

rgb Magenta = sRGB24 100 70 124

18

k

r

i+

0

